Synthesis and Properties of Synthetic Aikinite PbCuBiS3
Abstract
The goal of this study was the synthesis and study of the properties of synthetic aikinite, PbCuBiS3.
The synthesis was carried out in evacuated quartz ampoules for 7–8 h; the maximum temperature was 1250–1325 K. Next, the samples were cooled and kept at 600 K for a week. Then the ampoules were opened, the samples were carefully ground, and after melting, annealed at 600–800 K, depending on the composition, for at least two weeks to bring the samples into equilibrium. The annealed samples were studied by differential thermal (DTA), X-ray diffraction (XRD), microstructural (MSA) analyses, as well as microhardness measurements and density determination. XRD was performed using D 2 PHASER
with CuKa radiation and a Ni fi lter.
CuBiS2–PbS, Cu2S–PbCuBiS3, Bi2S3–PbCuBiS3, PbBi2S4–PbCuBiS3, PbBi4S7–PbCuBiS3 sections of quasi-triple system Cu2S–Bi2S3–PbS were studied using the complex of physical and chemical analysis methods and their phase diagrams were plotted. It was found that in addition to the PbBi2S4–PbCuBiS3 section, all sections are quasi-binary and they were characterized by the presence of limited solubility regions based on the initial components. The study of the CuBiS2-PbS section revealed the formation of a quaternary compound PbCuBiS3 occurring in nature as the mineral aikinite, congruently melting at 980 K. We established that PbCuBiS3 crystallizes in a rhombic syngony with lattice parameters a = 1.1632, b = 1.166,
c = 0.401 nm, Pnma space group, Z = 4. Using DTA and XRD methods we established that PbCuBiS3 compound is a phase of variable composition with a homogeneity range from 45 to 52 mol%/PbS. The PbCuBiS3 compound is a p-type semiconductor with a band gap energy of ΔE = 0.84 eV.
REFERENCES
1. Zhang Y-X., Ge Z-H., Feng J. Enhanced thermoelectric properties of Cu1.8S via introducing
Bi2S3 and Bi2S3/Bi core-shell nanorods. Journal of Alloys and Compounds.2017;727: 1076–1082. DOI: https://doi.org/10.1016/j.jallcom.2017.08.224
2. Mahuli N., Saha D., Sarkar S. K. Atomic layer deposition of p-type Bi2S3. Journal of Physical Chemistry
C. 2017;121(14): 8136–8144. DOI: https://doi.org/10.1021/acs.jpcc.6b12629
3. Ge Z-H, Qin P., He D, Chong X., Feng D., Ji Y-H., Feng J., He J. Highly enhanced thermoelectric
properties of Bi/Bi2S3 nano composites. ACS Applied Materials & Interfaces. 2017;9(5): 4828–4834. DOI:
https://doi.org/10.1021/acsami.6b14803
4. Savory C. N., Ganose A. M., Scanlon D. O. Exploring the PbS–Bi2S3 series for next generation
energy conversion materials. Chemistry of Materials. 2017;29(12): 5156 – 5167. DOI: https://doi.org/10.1021/acs.chemmater.7b00628
5. Li X., Wu Y, Ying H., Xu M., Jin C., He Z., Zhang Q., Su W., Zhao S. In situ physical examination
of Bi2S3 nanowires with a microscope. Journal of Alloys and Compounds. 2019;798: 628–634. DOI: https://doi.org/10.1016/j.jallcom.2019.05.319
6. Patila S. A., Hwanga Y-T., Jadhavc V. V., Kimc K. H., Kim H-S. Solution processed growth and
photoelectrochemistry of Bi2S3 nanorods thin fi lm. Journal of Photochemistry & Photobiology, A: Chemistry. 2017;332: 174–181. DOI: https://doi.org/10.1016/j.jphotochem.2016.07.037
7. Yang M., Luo Y. Z., Zeng M. G., Shen L., Lu Y. H., Zhou J., Wang S. J., Souf I. K., Feng Y. P. Pressure
induced topological phase transition in layered Bi2S3. Physical Chemistry Chemical Physics.2017;19(43):
29372–29380. DOI: https://doi.org/10.1039/C7CP04583B
8. Kоhatsu I., Wuensch B. J. The crystal structure of aikinite, PbCuBiS3. Acta Crystallogr. 1971;27(6):
1245–1252. DOI: https://doi.org/10.1107/s0567740871003819
9. Ohmasa M., Nowacki W. A redetermination on the crystal structure of aikinite (BiS2/S/S/CuIVPbVII).
Z. Krystallogr. 1970;132(1–6): 71–86. DOI: https://doi.org/10.1524/zkri.1970.132.1-6.71
10. Strobel S., Sohleid T. Three structures for strontium copper (I) lanthanidis (III) selinides
SrCuMeSe3 (M=La, Gd, Lu). J. Alloys and Compounds. 2006;418(1–2): 80–85. DOI: https://doi.org/10.1016/j.jallcom.2005.09.090
11. Sikerina N. V., Andreev O. V. Kristallicheskaya struktura soedinenii SrLnCuS3(Ln=Gd, Lu) [Crystal
structure of SrLnCuS3 compounds (Ln = Gd, Lu)]. Russian Journal of Inorganic Chemistry. 2007;52(4):
641–644. Available at: https://www.elibrary.ru/item.asp?id=9594111 (In Russ.)
12. Edenharter A., Nowacki W., Takeuchi Y. Verfeinerung der kristallstructur von Bournonit [(SbS3)1/CuPbPb2IVVIIVIII] und von seligmannit [(AsS3)2/CuPbPb2IVVIIVIII]. Z. Kristallogr. 1970;131(1): 397–417. DOI: https://doi.org/10.1524/zkri.1970.131.1-6.397
13. Kaplunnik L. N. Kristallicheskie struktury mineralov velikita, aktashita, shvatsita, tennantita,
galkhaita, lindstremita-krupkaita i sinteticheskoi Pb, Sn sul’fosoli [The crystal structures of the
minerals are granite, actashite, schwa-cit, tennantite, galhaite, lindstromite-krupkaite and synthetic Pb,
Sn sulphosols]. Abstract. diss. сand. geol.-miner. sciences. Moscow: MSU Publ.; 1978. 25 p. Availableat: https://search.rsl.ru/ru/record/01007805415 (In Russ.)
14. Gasymov V. A., Mamedov H. S. On the crystal chemistry of the intermediate phases of the vis-mutinaikinite system (Bi2S3–CuPbBiS3). Azerb. khim. zhurn. [Azerbaijan Chemical Journal]. 1976;(1): 121–125. Available at: https://cyberleninka.ru/article/n/fazovyeravnovesiya-v-sisteme-pbla2s4-pbbi2s4 (In Russ.,
abstract in Eng.)
15. Christuk A. E., Wu P., Ibers J. A. New quaternary chalcogenides BaLnMQ3 (Ln – Rare Earth; M = Cu, Ag;
Q = S, Se). J. Solid State Chem. 1994;110(2): 330–336. DOI: https://doi.org/10.1006/jssc.1994.1176
16. Wu P., Ibers J. A. Synthesis of the new quaternary sulfi des K2Y4Sn2S11 and BaLnAgS3 (Ln = Er, Y, Gd) and the Structures of K2Y4Sn2S11 and BaErAgS3. J. Solid State Chem. 1994;110(1): 156–161. DOI: https://doi.org/10.1006/jssc.1994.1150
17. Pobedimskaya E. A., Kaplunnik L. N., Petrova I. V. Crystal chemistry of sulfi des. Results of Science and
Technology. Series crystal chemistry. Moscow: Publishing House of the Academy of Sciences of the USSR; 1983. 17: 164 p. (In Russ.)
18. Gulay L. D., Shemet V. Ya., Olekseyuk I. D. Investigation of the R2S3–Cu2S–PbS (R = Y, Dy, Ho and
Er) systems. J. Alloys and Compounds. 2007;43(1–2): 77– 8 4 . DOI: https://doi.org/10.1016/j.jallcom.2006.05.029
19. Kostov I., Mincheva-Stefanova I. Sulfide minerals. Moscow: Mir, 1984. 281 p.
20. Alieva R. A., Bayrmova S. T., Aliev O. M. Phase diagrams of the CuSbS2-MS (M = Pb, Eu, Yb) systems.
Inorganic Materials. 2010;46 (7): 703–706. DOI: https://doi.org/10.1134/S0020168510070022
21. Bayramova S. T., Bagieva M. R., Aliev O. M., Ragimova V. M. Synthesis and properties of structural
analogs of the mineral bournonite. Inorganic Materials. 2011;47(4): 345–348. DOI: https://doi.org/10.1134/S0020168511040054
22. Bayramova S. T., Bagieva M. R., Aliev O. M. Phase relations in the CuAsS2–MS (M – Pb, Eu, Yb)
systems. Inorganic Materials. 2011; 47 (3): 231–234.
DOI: https://doi.org/10.1134/S0020168511030046
23. Aliev O. M., Ajdarova D. S., Bayramova S. T., Ragimova V. M. Nonstoichiometry in PbCuSbS3. Azerb.
chem. journal. 2016;(2): 51–54. Available at:
https://cyberleninka.ru/article/n/nonstoichiometry-inpbcusbs3-compound
24. Aliev O. M., Ajdarova D. S., Agayeva R. M., Ragimova V. M. Phase formation in quasiternary system Cu2S–PbS–Sb2S3. Intern Journal of Application and Fundamental Research. 2016;(12): 1482–1488.
Available at: https://applied-research.ru/pdf/2016/2016_12_8.pdf (In Russ., abstract in Eng.)
25. Aliev O. M., Azhdarova D. S., Agayeva R. M., Maksudova T. F. Phase relations along the Cu2S(Sb2S3,
PbSb2S4, Pb5Sb4S11)–PbCuSbS3 joins in the pseudoternary system Cu2S–PbS–Sb2S3 and physical properties of (Sb2S3)1–x(PbCuSbS3)x solid solutions. Inorganic Materials. 2018;54(12): 1199–1204. DOI: https://doi.org/10.1134/S0020168518120014
26. Rzaguluev V. A., Kerimli O. Sh., Azhdarova D. S., Mammadov Sh. H., Aliev O. M. Phase equilibria in the
Ag8SnS6–Cu2SnS3 and Ag2SnS3–Cu2Sn4S9 systems. Kondensirovannye sredy i mezhfaznye granitsy =
Condensed Matter and Interphases. 2019;21 (4): 544–551. DOI: https://doi.org/10.17308/kcmf.2019.21/2365
(In Russ., abstract in Eng.)
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.