The study of the quasi-triple system FeS–Ga2S3–Ag2S by a FeGa2S4–AgGaS2 section
Abstract
The interest in the study of systems containing sulphides with the formula AIBIIIСVI
2 is generated in particular by emerging opportunities for their practical use in the production of non-linear optical devices, detectors, solar cells, photodiodes, luminophors, etc. Therefore, taking into account the search for new promising materials based on silver and iron thiogallates, the goal of this work is to study the quasi-binary section FeGa2S4–AgGaS2 of the quaternary system Fe–Ag–Ga–S.
The alloys of the AgGaS2-FeGa2S4 system were synthesised from high-purity base metals: iron – 99.995 %, gallium – 99.999 %, silver – 99.99 %, and sulphur – 99.99 %. The alloys were studied using differential thermal analysis, X-ray phase analysis, and microstructural analysis as well as microhardness measurement and density determination. Using the methods of physicochemical analysis, a T-x phase diagram of the AgGaS2-FeGa2S4 section, which is the internal
section of the quasi-triple FeS–Ga2S3–Ag2S system, was studied and constructed for the fi rst time. It was established that
this system is of the simple eutectic type. The composition of the eutectic point is 56 mol% FeGa2S4 and Т =1100 К. The solid solution ranges were determined on the basis of the source components. Based on FeGa2S4 and AgGaS2 at the eutectic temperature the solubility stretches to 10 and 16 mol% respectively. With decreasing temperature, the solid solutions
narrow and, at room temperature, comprise 4 mol% AgGaS2 based on iron thiogallate (FeGa2S4) and 11 mol% FeGa2S4 based on silver thiogallate (AgGaS2).
REFERENCES
1. Zhаo B., Zhu S., Li Z., Yu F., Zhu X., Gao D. Growth of AgGaS2 single crystal by descending crucible
with rotation method and observation of properties. Chinese Sci. Bull. 2001;46(23): 2009–2013. DOI: https://doi.org/10.1007/BF02901918
2. Goryunova N. A. Slozhnye almazopodobnye poluprovodniki [Complex diamond-like
semiconductors]. Moscow: Sov. radio. Publ.; 1968. 215 c. (In Russ.)
3. Abrikosov N. Kh., Shelimova L. E. Poluprovodnikovye materialy na osnove soedinenii
AIVBVI [Semiconductor materials based on compounds AIVBVI]. Moscow: Nauka Publ.; 1975. 195 p. (In Russ.)
4. Kushwaha A. K., Khenata R., Bouhemadou A., Bin-Omran S., Haddadi K. Lattice dynamical properties
and elastic constants of the ternary chalcopyrite compounds CuAlS2, CuGaS2, CuInS2, and AgGaS2.
Journal of Electronic Materials. 2017;46(7): 4109–4118. DOI: https://doi.org/10.1007/s11664-017-5290-6
5. Uematsu T., Doi T., Torimoto T., Kuwabata S. Preparation of luminescent AgInS2-AgGaS2 solid
solution nanoparticles and their optical properties. The Journal of Physical Chemistry Letters. 2010;1(22):
3283–3287. DOI: https://doi.org/10.1021/jz101295w
6. Karaagac H., Parlak M. The investigation of structural, electrical, and optical properties of thermal
evaporated AgGaS2 thin films. J. Thin Solid Films. 2011;519(7): 2055–2061. DOI: https://doi.org/10.1016/j.tsf.2010.10.027
7. Karunagaran N., Ramasamy P. Synthesis, growth and physical properties of silver gallium sulfi de single
crystals. Materials Science in Semiconductor Processing. 2016;41: 54–58. DOI: https://doi.org/10.1016/j.mssp.2015.08.012
8. Zhou H., Xiong L., Chen L., Wu L. Dislocations that decrease size mismatch within the lattice leading
to ultrawide band gap, large second-order susceptibility,and high nonlinear optical performance of AgGaS2. Angewandte Chemie International Edition.2019;58(29):
9979–9983. DOI: https://doi.org/10.1002/anie.201903976
9. Li G., Chu Y., Zhou Z. From AgGaS2 to Li2ZnSiS4: Realizing impressive high laser damage threshold
together with large second-harmonic generation response. Journal Chemistry of Materials. 2018;30(3):
602–606. DOI: https://doi.org/10.1021/acs.chemmater.7b05350
10. Yang J., Fan Q., Yu Y., Zhang W. Pressure effect of the vibrational and thermodynamic properties of
chalcopyrite-type compound AgGaS2: A fi rst-principles investigation. Journal Materials. 2018;11(12): 2370.
DOI: https://doi.org/10.3390/ma11122370
11. Paderick S., Kessler M., Hurlburt T. J., Hughes S. M. Synthesis and characterization of AgGaS2
nanoparticles: a study of growth and fl uorescence. Journal Chemical Communications. 2018;54(1): 62–65.
DOI: https://doi.org/10.1039/C7CC08070K
12. Kato K., Okamoto T., Grechin S., Umemura N. New sellmeier and thermo-optic dispersion formulas
for AgGaS2. Journal Crystals. 2019;9(3): 129–135. DOI: https://doi.org/10.3390/cryst9030129
13. Li W., Li Y., Xu Y., Lu J., Wang P., Du J., Leng Y. Measurements of nonlinear refraction in the midinfrared
materials ZnGeP2 and AgGaS2. Journal Applied Physics B. 2017;123(3). DOI: https://doi.org/10.1007/s00340-017-6643-9
14. Jahangirova S. K., Mammadov Sh. H., Ajdarova D. S., Aliyev O. M., Gurbanov G. R. Investigation
of the AgGaS2–PbS and some properties of phases of variable composition. Russian Journal of Inorganic
Chemistry. 2019;64(9): 1169–1171. DOI: https://doi.org/10.1134/S0036023619090092
15. Asadov S. M., Mustafaeva S. N., Guseinov D. T. X-ray dosimetric characteristics of AgGaS2 single
crystals grown by chemical vapor transport. Inorganic Materials. 2017;53(5): 457–461. DOI:
https://doi.org/10.1134/S0020168517050028
16. Mys O., Adamenko D., Skab I., Vlokh R. Anisotropy of acousto-optic fi gure of merit for the
collinear diffraction of circularly polarized optical waves at the wavelength of isotropic point in
AgGaS2crystals. Ukrainian Journal of Physical Optics. 2019;20(2): 73–80. DOI: https://doi.org/10.3116/16091833/20/2/73/201
17. Karunagaran N., Ramasamy P. Investigation on synthesis, growth, structure and physical properties
of AgGa0.5In0.5S2 single crystals for Mid-IR application. Journal of Crystal Growth. 2018;483: 169–174. DOI:
https://doi.org/10.1016/j.jcrysgro.2017.11.030
18. Ranmohotti K. G. S., Djieutedjeu H., Lopez J., Page A., Haldolaarachchige N., Chi H., Sahoo P.,
Uher C., Young D., Poudeu P. F. P. Coexistence of highTc ferromagnetism and n-type electrical conductivity
in FeBi2Se4. J. of the American Chemical Society.2015;137(2): 691–698. DOI: https://doi.org/10.1021/ja5084255
19. Karthikeyan N., Aravindsamy G., Balamurugan P., Sivakumar K. Thermoelectric properties of layered
type FeIn2Se4 chalcogenide compound. Materials Research Innovations. 2018;22(5): 278–281. DOI:
https://doi.org/10.1080/14328917.2017.1314882
20. Nakafsuji S., Tonomura H., Onuma K., Nambu Y., Sakai O., Maeno Y., Macaluso R. T., Chan J. Y.
Spin disorder and order in quasi-2D triangular Heisenberg antiferromagnets: comparative study of
FeGa2S4, Fe2Ga2S5 and NiGa2S4. Phys. Rev. Letters.2007;99(1–4): 157-203. DOI: https://doi.org/10.1103/PhysRevLett.99.157203
21. Rushchanskii K. Z., Haeuseler H., Bercha D. M. Band structure calculations on the layered compounds
FeGa2S4 and NiGa2S4. J. Phys. Chem. Solids. 2002;63(11): 2019–2028. DOI:
https://doi.org/10.1016/S0022-3697(02)00188-9
22. Dalmas de Reotier P., Yaouanc A., MacLaughlin D. E., Songrui Zhao. Evidence for an exotic magnetic
transition in the triangular spin system FeGa2S4. J. Phys. Rev. B. 2012;85(14): 140407.1–140407.5. DOI: https://doi.org/10.1103/physrevb.85.140407
23. Myoung B. R., Lim J. T., Kim C. S. Investigation of magnetic properties on spin-ordering effects of
FeGa2S4 and FeIn2S4. Journal of Magnetism and Magnetic Materials. 2017;438: 121–125. DOI: https://doi.org/10.1016/j.jmmm.2017.04.056
24. Asadov M. M., Mustafaeva S. N., Hasanova U. A., Mamedov F. M., Aliev O. M., Yanushkevich K. I., Nikitov
S. A., Kuli-Zade E. S. Thermodynamics of FeS–PbS–In2S3 and properties of intermediate phases. Journal
Defect and Diffusion Forum.2018;385: 175–181. DOI: https://doi.org/10.4028/www.scientific.net/DDF.385.175
25. Li K., Yuan D., Shen S., Guo J. Crystal structures and property characterization of two magnetic
frustration compounds. Journal Powder Diffraction. 2018;33(3): 190–194. DOI: https://doi.org/10.1017/S0885715618000507
26. Chen B., Zhu S., Zhao B., Lei Y., Wu X., Yuan Z., He Z. Differential thermal analysis and crystal growth
of AgGaS2. Journal of Crystal Growth. 2008;310(3): 635–638. DOI: https://doi.org/10.1016/j.jcrysgro.2007.10.067
27. Sinyakova E. F., Kosyakov V. I., Kokh K. A. Oriented crystallization of AgGaS2 from the melt
system Ag–Ga–S. J. Inorganic Materials. 2009;45(11): 1217–1221. DOI: https://doi.org/10.1134/S0020168509110041
28. Chykhrij S. I., Parasyuk O. V., Halka V. O. Crystal structure of the new quaternary phase AgCd2GaS4 and
phase diagram of the quasibinary system AgGaS2–CdS. Journal of Alloys and Compounds.2000;312(1–2):
189–195. DOI: https://doi.org/10.1016/S0925-8388(00)01145-2
29. Olekseyuk I. D., Parasyuk O. V., Halka V. O., Piskach L. V. F., Pankevych V. Z. Romanyuk Ya. E. Phase
equilibria in the quasi-ternary system Ag2S–CdS– Ga2S3. J. Alloys and compounds. 2001;325(10): 167–179.
DOI: https://doi.org/10.1016/S0925-8388(01)01361-5
30. Brand G., Kramer V. Phase equilibrium in the quasi-binary system Ag2S–Ga2S3. Mater. Res. Bull.
1976;11(11): 1381–1388. DOI: https://doi.org/10.1016/0025-5408(76)90049-0
31. Lazarev V. B., Kish Z. Z., Peresh E. Yu., Semrad E. E. Slozhnye khal’kogenidy v sisteme Аэ-Вэээ-СVI
[Complex chalcogenides in the Aэ–Bэээ–CVI system].
Moscow: Metallurgiya Publ; 1993. 229 p. (In Russ.)
32. Ugay Ya. A. Vvedenie v khimiyu poluprovodnikov [Introduction to the chemistry of semiconductors].
Moscow: Vysshaya shkola Publ.; 1975. 302 p. (In Russ.)
33. Pardo M. E, Dogguy-Smiri L., Flahaut J., Nguyen H. D. System Ga2S3-FeS Diagramme de phase – etude
cristallographique. Mater. Res. Bull. 1981;16(11): 1375–1384. DOI:
https://doi.org/10.1016/0025-5408(81)90056-8
34. Wintenberger M. About the unit cells and crystal structures of ~MGa2X4 (M = Mn, Fe, Co; X = S,
Se) and ZnAI2S4 Type. In: Proc. VII Int. Conf. on Solid Compounds of Transition Elements, CNRS. Grenoble,
France: IA 14/1-3, 1983.
35. Rustamov P. G., Babaeva P. K., Azhdarova D. S., Askerova N. A., Ailazov M. R. Nature of interaction in
Mn(Fe,Co,Ni)–Ga(In)–S(Se) ternary systems. Azerb. Khim. Zh. 1984;15: 101–103.
36. Raghavan V. Fe–Ga–S (Iron-Gallium-Sulfur). J. Phase Equil. 1998;19: 267–268. DOI:
https://doi.org/10.1361/105497198770342319
37. Ueno T., Scott S. D. Phase relations in the Ga–Fe–S system at 900 and 800 C. The Canadian
Mineralogist. 2002;40(2): 568–570. DOI: https://doi.org/10.2113/gscanmin.40.2.563
38. Allazov M. R. The system of FeS–GaS–S. Bulletin of Baku State University. 2009;(2): 42–47.
Availableat: http://static.bsu.az/w8/Xeberler%20Jurnali/Tebiet%202009%203/42-47.pdf
39. Dogguy-Smiri L., Dung Nguyen Huy, Pardo M. P. Structure crystalline du polytype FeGa2S4 a 1T. Mater.
Res. Bull. 1980;15(7): 861–866. DOI: https://doi.org/10.1016/0025-5408(80)90208-1
40. Hahn H., Klingler W. Unter such ungen uber ternare chalkogenide. I. Uber die, kristall structure
iniger ternaerer sulfi de, die sichvom In2S3 ableiten. Zeitschrift fur Anorganische und Allgemeine Chemie.
1950; 263(4): 177–190. DOI: https://doi.org/10.1002/zaac.19502630406
41. Dogguy-Smiri L., Pardo M. P. Etude cristallographique du systeme FeS–Ga2S3. Compt. Rend.
Acad. Sci. 1978;287: 415-418.
42. Allazov M. R., Musaeva S. S., Abbasova R. F., Huseynova A. G. Phase crystallization regions along
isothermal sections of Fe–Ga–S systems. Bulletin of the Baku State University. 2013; (3):11–14. Available
at: http://static.bsu.az/w8/Xeberler%20Jurnali/Tebiet%20%202013%20%203/11-15.pdf (In Russ.,
abstract in Eng.)
43. Rzaguluev V. A., Kerimli O. Sh., Azhdarova D. S., Mammadov Sh. H., Aliev O. M. Phase equilibria in the
Ag8SnS6–Cu2SnS3 and Ag2SnS3–Cu2Sn4S9 systems. Kondensirovannye sredy i mezhfaznye granitsy=Condensed Matter and Interphases. 2019;21(4): 544–551. DOI:
https://doi.org/10.17308/kcmf.2019.21/2365 (In Russ., abstract in Eng.)
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.