New Thallium Tellurides with Rare Earth Elements
Abstract
Compounds of the Tl4LnTe3 (Ln-Nd, Sm, Tb, Er, Tm) composition were synthesized by the direct interaction of stoichiometric amounts of thallium telluride Tl2Te elementary rare earth elements (REE) and tellurium in evacuated (10-2 Pa) quartz ampoules. The samples obtained were identified by differential thermal and X-ray phase analyses. Based on the data from the heating thermograms, it was shown that these compounds melt with decomposition by peritectic reactions. Analysis of powder diffraction patterns showed that they were completely indexed in a tetragonal lattice of the Tl5Te3 type (space group I4/mcm). Using the Le Bail refinement, the crystal lattice parameters of the synthesized compounds were calculated.
It was found that when the thallium atoms located in the centres of the octahedra were substituted by REE atoms, there occurred a sharp decrease in the а parameter and an increase in the с parameter. This was due to the fact that the substitution of thallium atoms with REE cations led to the strengthening of chemical bonds with tellurium atoms. This was accompanied by some distortion of octahedra and an increase in the с parameter. A correlation between the parameters of the crystal lattices and the atomic number of the lanthanide was revealed: during the transition from neodymium to thulium, there
was an almost linear decrease in both parameters of the crystal lattice, which was apparently associated with lanthanide contraction. The obtained new compounds complement the extensive class of ternary compounds - structural analogues of Tl5Te3 and are of interest as potential thermoelectric and magnetic materials.
References
1. Berger L. I., Prochukhan V. D. Troinye almazopodobnye
poluprovodniki [Ternary diamond-like semiconductors].
Moscow: Metallurgiya; 1968. 151 p. (In Russ.)
2. Villars P, Prince A. Okamoto H. Handbook of
ternary alloy phase diagrams (10 volume set). Materials
Park, OH: ASM International; 1995. 15000 p.
3. Tomashyk V. N. Multinary Alloys Based on III-V
Semiconductors. CRC Press; 2018. 262 p. DOI: https://doi.org/10.1201/9780429055348
4. Babanly M. B., Chulkov E. V., Aliev Z. S. et al. Phase
diagrams in materials science of topological insulators
based on metal chalkogenides. Russian Journal of
Inorganic Chemistry. 2017;62(13): 1703–1729. DOI:
https://doi.org/10.1134/S0036023617130034
5. Imamaliyeva S. Z., Babanly D. M., Tagiev D. B.,
Babanly M. B. Physicochemical aspects of development
of multicomponent chalcogenide phases having the
Tl5Te3 structure. A Review. Russian Journal of Inorganic
Chemistry. 2018;63(13): 1703–1724 DOI: https://doi.org/10.1134/s0036023618130041
6. Asadov M. M., Babanly M. B., Kuliev A. A. Phase
equilibria in the system Tl–Te. Izvestiya Akademii Nauk
SSSR, Neorganicheskie Materialy. 1977;13(8): 1407–1410.
7. Okamoto H. Te-Tl (Tellurium-Thallium). Journal
of Phase Equilibria. 2001;21(5): 501. DOI: https://doi.org/10.1361/105497100770339833
8. Schewe I., Böttcher P., Schnering H. G. The crystal
structure of Tl5Te3 and its relationship to the Cr5B3.
Zeitschrift für Kristallographie. 1989;188(3-4): 287–298.
DOI: https://doi.org/10.1524/zkri.1989.188.3-4.287
9. Böttcher P., Doert Th., Druska Ch., Brandmöller S.
Investigation on compounds with Cr5B3 and In5Bi3
structure types. Journal of Alloys and Compounds.
1997;246(1-2): 209–215. DOI: https://doi.org/10.1016/S0925-8388(96)02455-3
10. Imamalieva S. Z., Sadygov F. M., Babanly M. B.
New thallium neodymium tellurides. Inorganic
Materials. 2008;44(9): 935–938. DOI: https://doi. org/10.1134/s0020168508090070
11. Babanly M. B., Imamalieva S. Z., Babanly D. М.,
Sadygov F. M. Tl9LnTe6 (Ln-Ce, Sm, Gd) novel structural
Tl5Te3 analogues. Azerbaijan Chemical Journal. 2009(1):
122–125. (In Russ., abstract in Eng.)
12. Imamaliyeva S. Z., Tl4GdTe3 and Tl4DyTe3 –
novel structural Tl5Te3 analogues. Physics and
Chemistry of Solid State. 2020;21(3): 492–495. DOI:
https://doi.org/10.15330/pcss.21.3.492-495
13. Wacker K. Die kristalstrukturen von Tl9SbSe6
und Tl9SbTe6. Z. Kristallogr. Supple. 1991;3: 281.
14. Doert T., Böttcher P. Crystal structure of
bismuthnonathalliumhexatelluride BiTl9Te6. Zeitschrift für Kristallographie - Crystalline Materials. 1994;209(1):
95. DOI: https://doi.org/10.1524/zkri.1994.209.1.95
15. Bradtmöller S., Böttcher P. Darstellung und
kristallostructur von SnTl4Te3 und PbTl4Te3. Zeitschrift
for anorganische und allgemeine Chemie. 1993;619(7):
1155–1160. DOI: https://doi.org/10.1002/zaac.19936190702
16. Voroshilov Yu. V., Gurzan M. I., Kish Z. Z.,
Lada L. V. Fazovye ravnovesiya v sisteme Tl-Pb-Te i
kristallicheskaya struktura soedinenii tipa Tl4BIVX3 i
Tl9BVX6 [Phase equilibria in the Tl-Pb-Te system and
the crystal structure of Tl4BIVX3 and Tl9BVX6 compounds].
Izvestiya Akademii nauk SSSR. Neorganicheskie
materialy. 1988;24: 1479–1484. (In Russ.)
17. Bradtmöller S., Böttcher P. Crystal structure of
copper tetrathallium tritelluride, CuTl4Te3. CuTl4Te3.
Zeitschrift für Kristallographie - Crystalline Materials.
1994;209(1): 97. DOI: https://doi.org/10.1524/zkri.1994.209.1.97
18. Bradtmöller S., Böttcher P. Crystal structure of
molybdenum tetrathallium tritelluride, MoTl4Te3.
Zeitschrift für Kristallographie – Crystalline Materials.
1994;209(1): 75. DOI: https://doi.org/10.1524/zkri.1994.209.1.75
19. Babanly M. B., Imamalieva S. Z., Sadygov F. M.
New thallium tellurides with indium and aurum.
Chemical Problems (Kimya Problemlәri). 2009; 171–174.
(In Russ., abstract in Eng.)
20. Guo Q., Chan M., Kuropatwa B. A., Kleinke H.
Enhanced thermoelectric properties of variants of
Tl9SbTe6 and Tl9BiTe6. Chemistry of Materials.
2013;25(20): 4097–4104. DOI: https://doi.org/10.1021/cm402593f
21. Guo Q., Assoud A., Kleinke H. Improved bulk
materials with thermoelectric figure-of-merit greater
than 1: Tl10–xSnxTe6 and Tl10–xPbxTe6. Advanced Energy
Materials. 2014;4(14): 1400348-8. DOI: https://doi.org/10.1002/aenm.201400348
22. Bangarigadu-Sanasy S., Sankar C. R., Schlender
P., Kleinke H. Thermoelectric properties of Tl
10-xLnxTe6, with Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho
and Er, and 0.25<x<1.32. Journal of Alloys and
Compounds. 2013;549: 126–134. DOI: https://doi.org/10.1016/j.jallcom.2012.09.023
23. Shi Y., Sturm C., Kleinke H. Chalcogenides as
thermoelectric materials. Journal of Solid State
Chemistry. 2019; 270: 273–279. DOI: https://doi.org/10.1016/j.jssc.2018.10.049
24. Piasecki M., Brik M. G., Barchiy I. E., Ozga K.,
Kityk I. V., El-Naggar A. M., Albassam A. A.,
Malakhovskaya T. A., Lakshminarayana G. Band
structure, electronic and optical features of Tl4SnX3
(X= S, Te) ternary compounds for optoelectronic
applications. Journal of Alloys and Compounds.
2017;710: 600–607. DOI: https://doi.org/10.1016/j.jallcom.2017.03.280
25. Reshak A. H., Alahmed Z. A., Barchij I. E.,
Sabov M. Yu., Plucinski K. J., Kityk I. V., Fedorchuk A. O.
The influence of replacing Se by Te on electronic
structure and optical properties of Tl4PbX3 (X = Se or
Te): experimental and theoretical investigations. RSC
Advances. 2015;5(124): 102173–102181. DOI: https://doi.org/10.1039/C5RA20956K
26. Malakhovskay-Rosokha T. A., Filep M. J.,
Sabov M. Y., Barchiy I. E., Fedorchuk A. O. Plucinski K. J.
IR operation by third harmonic generation of Tl4PbTe3
and Tl4SnS3 single crystals. Journal of Materials Science:
Materials in Electronics. 2013;24(7): 2410–2413. DOI:
https://doi.org/10.1007/s10854-013-1110-9
27. Isaeva A., Schoenemann R., Doert T. Syntheses,
crystal structure and magnetic properties of Tl9RETe6
(RE = Ce, Sm, Gd). Crystals. 2020;10(4): 277–11. DOI:
https://doi.org/10.3390/cryst10040277
28. Bangarigadu-Sanasy S., Sankar C. R., Dube P. A.,
Greedan J. E., Kleinke H. Magnetic properties of
Tl9LnTe6, Ln = Ce, Pr, Tb and Sm. Journal of Alloys and
Compounds. 2014;589: 389–392. DOI: https://doi.org/10.1016/j.jallcom.2013.11.229
29. Arpino K. E., Wasser B. D., and McQueen T. M.
Superconducting dome and crossover to an insulating
state in [Tl4]Tl1-xSnxTe3. APL Materials. 2015;3(4):
041507. DOI: https://doi.org/10.1063/1.4913392
30. Arpino K. E., Wallace D. C., Nie Y. F., Birol T.,
King P. D. C., Chatterjee S., Uchida M., Koohpayeh S.
M., Wen J.-J., Page K., Fennie C. J., Shen K. M.,
McQueen T. M. Evidence for topologically protected
surface states and a superconducting phase in [Tl4]
(Tl1-xSnx)Te3 using photoemission, specific heat, and
magnetization measurements, and density functional
theory. Physical Review Letters. 2014;112(1): 017002-5.
DOI: https://doi.org/10.1103/physrevlett.112.017002
31. Niu C., Dai Y., Huang B. et al. Natural threedimensional
topological insulators in Tl4PbTe3 and
Tl4SnTe3. Frühjahrstagung der Deutschen Physikalischen
Gesellschaft. Dresden, Germany, 30 Mar 2014 – 4 Apr
2014.
32. Imamalieva S. Z. Phase diagrams in the
development of thallium-REE tellurides with Tl5Te3
structure and multicomponent phases based on them.
Overview. Kondensirovannye sredy i mezhfaznye granitsy =
Condensed Matter and Interphases. 2018;20(3): 332–347.
DOI: https://doi.org/10.17308/kcmf.2018.20/570
33. Jia Y.Q. Crystal radii and effective ionic radii of
the rare earth ions. Journal of Solid State Chemistry.
1991; 95(1): 184-187. DOI: https://doi.org/10.1016/0022-4596(91)90388-X
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.