Calculation of the nonstoichiometry area of nanocrystalline palladium (II) oxide films

Keywords: Palladium (II) oxide, Nanostructures, Thermal oxidation, Crystal structure, Nonstoichiometry, Point defects, Gas sensors

Abstract

Nanocrystalline palladium (II) oxide films were synthesised using thermal oxidation in the oxygen atmosphere of the initial ultradispersed metal palladium layers with a thickness of ~ 35 nanometres that were obtained on SiO2/Si (100) substrates using the method of thermal sublimation in high vacuum. Using X-ray analysis, it was established that during thermal oxidation in the oxygen atmosphere within the temperature range T = 670–970 K the values of the a and c parameters of the tetragonal lattice as well as the unit cell volume of nanocrystalline PdO films increased monotonously with the rise of the temperature reaching the maximum values at T = 950–970 K. It was found that the parameters of the tetragonal lattice and the unit cell volume of nanocrystalline PdO films decreased as the oxidation temperature increased up to T > 970 K
Based on the ratio of the c/a parameters, it was shown that the main contribution to the deformation phenomena of the tetragonal lattice were mostly due to the increase in the elementary translations along the coordination axes OX and OY. Based on an assumption that the ionic component of the chemical bond is essential to the palladium (II) oxide structure, we suggested a method for the calculation of the range of the nonstoichiometry area for nanocrystalline PdO films, using the reported data on the radii of cation Pd2+ and anion O2- taking into account their coordination environment. The results of the calculations showed that nanocrystalline PdO films synthesised with an oxygen pressure of ~ 105 kPa are characterised
by the two-sided homogeneity region in relation to the stoichiometric ratio of the components. The homogeneity region of nanocrystalline PdO films is characterised by the retrograde solidus line in the range of the temperatures T = 770–1070 K.

Downloads

Download data is not yet available.

Author Biographies

Alexander M. Samoylov, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

DSc in Chemistry, Associate
Professor, Professor at the Department of Materials
Science and the Industry of Nanosystems, Voronezh
State University, Voronezh, Russian Federation;
e-mail: samoylov@chem.vsu.ru.

Dmitry I. Pelipenko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

post-graduate student at the
Department of Materials Science and the Industry of
Nanosystems, Voronezh State University, Voronezh,
Russian Federation; e-mail: pelipencko.dmitry@yandex.com

Natalia S. Kuralenko, Voronezh State University, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

student, Faculty of Chemistry,
Department of Materials Science and the Industry of
Nanosystems, Voronezh State University, Voronezh,
Russian Federation; e-mail: nataliprosto99@gmail.com

References

Korotcenkov G. Handbook of gas sensor materials. Properties, fdvantages and shortcomings for applications.

Volume 1: Conventional approaches. New York, Heidelberg Dordrecht London: Springer, New York, NY; 2013. 442 p. https://doi.org/10.1007/978-1-4614-7165-3

Yamazoe N. Toward innovations of gas sensor technology. Sensors and Actuators B. 2005;108: 2–14. https://doi.org/10.1016/j.snb.2004.12.075

Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part I. Physical and chemical properties and sensor signal formation. Inorganic Materials. 2015;51(13): 1329–1347. https://doi.org/10.1134/S002016851513004X

Marikutsa A. V., Rumyantseva M. N., Gaskov A. M., Samoylov A. M Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena. Part II. Activecenters and sensor behavior. Inorganic Materials. 2016;52(13): 1311–1338. https://doi.org/10.1134/S0020168516130045

Seiyama T., Kato A., Fujiishi K., Nagatani M. A new detector for gaseous components using semiconductive thin films. Analytical Chemistry. 1962;34(11): 1502–1503. https://doi.org/10.1021/ac60191a001

Korotcenkov G. Metal oxides for solid-state gas sensors: What determines our choice? Materials Science and Engineering: B. 2007;139(1): 1–23. https://doi.org/10.1016/j.mseb.2007.01.044

Toda K., Furue R., Hayami S. Recent progress in applications of graphene oxide for gas sensing: A review. Analytica Chimica Acta. 2015;878: 43–53. https://doi.org/10.1016/J.ACA.2015.02.002

Chin Boon Ong, Law Yong Ng, Abdul Wahab Mohammad. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews. 2018;81: 536–551. https://doi.org/10.1016/j.rser.2017.08.020

Al-Hashem M., Akbar S., Morris P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A Review. Sensors Actuators B. 2019;301: 126845.https://doi.org/10.1016/j.snb.2019.126845

Kim H.-J., Lee J.-H. Highly sensitive and selectivegassensorsusingp-type oxide semiconductors: Overview. Sensors and Actuators B. 2014;192: 607–627. https://doi.org/10.1016/j.snb.2013.11.005

Ryabtsev S. V., Ievlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Microstructure and electrical properties of palladium oxide thin films for oxidizing gases detection. Thin Solid Films. 2017;636: 751-759. https://doi.org/10.1016/j.tsf.2017.04.009

García-Serrano O., López-Rodríguez C., Andraca-Adame J. A., Romero-Paredes G., Pena-Sierra R. Growth and characterization of PdO films obtained by thermal oxidation of nanometric Pd films by electroless deposition technique. Materials Science and Engineering B. 2010;174(1-3): 273–278. https://doi.org/10.1016/j.mseb.2010.03.064

Ryabtsev S. V., Shaposhnik A. V., Samoylov A. M., Sinelnikov A. A., Soldatenko S. A., Kushchev S. B., Ievlev V. M. Thin films of palladium oxide for gas sensors. Doklady Physical Chemistry. 2016;470(2): 158–161. https://doi.org/10.1134/s0012501616100055

Samoylov A., Ryabtsev S., Shaposhnik A., Kuschev S., Soldatenko S., Ievlev V. Palladium oxide thin film for oxidizing gases detecting. In: The 16-th International Meeting on Chemical Sensors IMCS 2016. Jeju, Jeju Island, Korea, July 10 – 13, 2016: Final Program & Absrtacts Book. Korea: 2016. 96 p.

Ryabtsev S. V., Iyevlev V. M., Samoylov A. M., Kuschev S. B., Soldatenko S. A. Real microstructure and electrical properties of palladium oxide thin films for oxidizing gases detecting. In: Science and Application of Thin Films, Conference & Exhibition (SATF-2016) Çeşme, Izmir, Turkey, September 19–23, 2016. Book of Abstract: Izmir Institute of Technology. Izmir: 2016.44 p.

Ievlev V. M., Ryabtsev S. V., Shaposhnik A. V., Samoylov A. M., Kuschev S. B., Sinelnikov A. A. Ultrathin films of palladium oxide for oxidizing gases detecting. Procedia Engineering. 2016;168: 1106-1109. https://doi.org/10.1016/j.proeng.2016.11.357

Ievlev V. M., Ryabtsev S. V., Samoylov A. M., Shaposhnik A. V., Kuschev S. B., Sinelnikov A. A. Thin and ultrathin films of palladium oxide for oxidizing gases detection. Sensors and Actuators B. 2018;255 (2): 1335–1342. https://doi.org/10.1016/j.snb.2017.08.121

Samoylov A. M., Ryabtsev S. V., Popov V. N., Badica P. Palladium (II) oxide nanostructures as promising materials for gas sensors. In: Novel nanomaterials synthesis and applications. George Kyzas (ed.). UK, London: IntechOpen; 2018. pp. 211–229. http://dx.doi.org/10.5772/intechopen.72323

Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik: v 3 tomakh [Phase diagrams of binary metal systems: Handbook: in 3 volumes]. Lyakishev N. P. (ed.) Moscow: Metallurgy Publ.; 1996–2000. (In Russ.)

Samoylov A. M., Ivkov S. A., Pelipenko D. I., Sharov M. K., Tsyganova V. O., Agapov B. L., Tutov E. A., Badica P. Structural changes in palladium nanofilms during thermal oxidation. Inorganic Materials. 2020;56(10): 1020–1026. https://doi.org/10.1134/S0020168520100131

Hammond C. The basics of crystallography and diffraction. Fourth edition. International Union of Crystallography. Oxford University Press; 2015. 519 p. https://doi.org/10.1093/acprof:oso/9780198738671.003.0009

ASTM JCPDS - International Centre for Diffraction Data. © 1987-2009. JCPDS-ICDD. Newtown Square, PA 19073. USA.

Grier D., McCarthy G., North Dakota. State University, Fargo, N. Dakota, USA, ICDD Grant-in-Aid, JCPDS-ICDD, 1991. Card no. 43-1024.

Kumar J., Saxena R. Formation of NaCl- and Cu2O-type oxides of platinum and palladium on carbon and alumina support films. Journal of the Less Common Metals. 1989; 147(1): 59-71.

https://doi.org/10.1016/0022-5088(89)90148-3

Wiberg, E., Wiberg, N., Holleman, A. F. Inorganic Chemistry. 1st English Edition. San Diego: Academic Press; Berlin: New York: De Gruyter; 2001. 1884 p.

Al-Hashem M., Akbar S., Morris P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A Review. Sensors and Actuators B. 2019;301:126-154. https://doi.org/10.1016/j.snb.2019.126845

Ugay Ya. A. Neorganicheskaya khimiya [Inorganic chemistry]. Мoscow: Vysshaya shkola Publ.; 1989. 483 p. (In Russ.)

Greenwood N. N., Earnshaw A. Chemistry of the Elements, 2nd Ed. Oxford: A division of Reed Educational

and Professional Publishing Ltd., 1998. 1341 p.

Goncharov E. G., Semenova G. V., Ugay Ya. A. Khimiya poluprovodnikov [Chemistry of semiconductors]. Voronezh: Voronezh State University Publ.; 1995.272 p. (In Russ.)

https://www.webelements.com/palladium/atom_sizes.html WebElements: The periodic table on the WWW [www.webelements.com] Copyright 1993-2018 Mark Winter [The University of Sheffield and Web Elements Ltd, UK]. All rights reserved.

Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A.1976;32(5): 751-767. https://doi.org/10.1107/s0567739476001551

Emsley J. The elements. 3-d Edition. United Kingdom, Oxford: Clarendon Press; 1998. 298 p.

Published
2021-03-16
How to Cite
Samoylov, A. M., Pelipenko, D. I., & Kuralenko, N. S. (2021). Calculation of the nonstoichiometry area of nanocrystalline palladium (II) oxide films. Condensed Matter and Interphases, 23(1), 62–72. https://doi.org/10.17308/kcmf.2021.23/3305
Section
Статьи