Synthesis, structure and superconducting properties of laminated thin film composites of YBа2 Cu3 O7–d /Y2 O3 as components of 2G HTS wires
Abstract
2G HTS wires are capable of transferring huge amounts of electrical energy without loss. An increase in the current-carrying capacity in these materials is possible due to an increase in the thickness of the superconducting layer; however, there is a problem with the appearance of impurity orientations and other defects with increasing thickness. We have proposed a solution of this problem by increasing the thickness of the superconducting layer by the MOCVD method using interlayers of yttrium oxide.
The aim of this study was the production of thick composite films with yttrium oxide interlayers and high critical current density. In addition, we want to show the effectiveness of the approach of introducing yttrium oxide interlayers for the reduction of the number of parasitic orientations and defects with an increase in HTS film thickness.
The deposition of YBа2Cu3O7–dand Y2O3 films was carried out layer by layer using reel-to-reel MOCVD equipment. A 12 mm wire of the following architecture was used as a substrate: 200 nm CeO2
(Gd2O3)/30–50 nm LaMnO3/5–7 nm IBAD-MgO/50 nm LaMnO3/50 nm Al2O3/60 μ Hastelloy 276. The resulting films were annealed in oxygen for obtaining the orthorhombic YBCO phase. YBа2Cu3O7–d
/Y2O3composites were obtained. In these composites, obtained using the MOCVD method, the amount of side (с║) orientation of the HTS layer was reduced and high values of the critical current density, exceeding 1 MA/cm at a thickness of > 2 μm remained. The efficiency of the approach of introducing yttrium oxide interlayers for the increase in the current characteristics with increasing film thickness was shown. It was found that further thickening of films with interlayers is prevented by the formation of nanopores, reducing the critical current density.
REFERENCES
1. Fleshler S., Buczek D., Carter B., Ogata M. Scaleup of 2G wire manufacturing at American
Superconductor Corporation. Physica C. 2009;469(15-
20): 1316–1321. https://doi.org/10.1016/j.physc.2009.05.234
2. Nagaishi T., Shingai Y., Konishi M., Taneda T.,
Ota H., Honda G., Kato T., Ohmatsu K. Development
of REBCO coated conductors on textured metallic
substrates. Physica C. 2009;469(15-20): 1311–1315.
https://doi.org/10.1016/j.physc.2009.05.253
3. Rosner C. H. Superconductivity: star technology
for the 21st century. IEEE Transactions on Applied
Superconductivity. 2001;11(1): 39–48. https://doi.org/10.1109/77.919283
4. Mansour R. R. Microwave superconductivity.
IEEE Transactions on Microwave Theory and Techniques.
2002;50(3): 750–759. https://doi.org/10.1109/22.989959
5. Hayakawa H., Yoshikawa N., Yorozu S., Fujimaki A. Superconducting digital electronics.
Proceedings of the IEEE. 2004;92(10): 1549–1563.
https://doi.org/10.1109/JPROC.2004.833658
6. Wimbush S. C. Large scale applications of HTS
in New Zealand. Physics Procedia. 2015;65: 221–224.
https://doi.org/10.1016/j.phpro.2015.05.125
7. Zhu J., Zheng X., Qiu M., Zhang Z., Li J., Yuan
W. Application simulation of a resistive type
superconducting fault current limiter (SFCL) in a
transmission and wind power system. Energy Procedia.
2015;75: 716–721. https://doi.org/10.1016/j.egypro.2015.07.498
8. Iwasaki H., Inaba S., Sugioka K., Nozaki Y.,
Kobayashi N. Superconducting anisotropy in the
Y-based system substituted for the Y, Ba and Cu sites.
Physica C. 1997;290: 113. https://doi.org/10.1016/S0921-4534(97)00634-5
9. Freyhardt H. C., Hellstrom E. E. High-temperature
superconductors: A Review of YBa2Cu3O6+x and
(Bi,Pb)2Sr2Ca2Cu3O10. Cryogenic Engineering. New York:
Springer; 2007. pp. 309–339. https://doi.org/10.1007/0-387-46896-X
10. Dimos D., Chaudhari P., Mannhart J.
Superconducting transport properties of grain
boundaries in YBa2Cu3O7bicrystals. Phys. Rev. B.
1990;41: 4038–4049. http://dx.doi.org/10.1103/PhysRevB.41.4038
11. Goyal A. (ed.) Second-Generation HTS
Conductors. Boston/Dordrecht/New York/London:
Kluwer Academic Publ.; 2009. 432 p.
12. Zhang H., Yang J., Wang S., Wu Y., Lv Q., Li S.
Film thickness dependence of microstructure and
superconductive property of PLD prepared YBCO
layers. Physica C. 2014;499: 54–56. https://doi.org/10.1016/j.physc.2014.01.001
13. Markelov A. V., Samoilenkov S. V., Akbashev A. R., Vasiliev A. L., Kaul A. R. Control of
orientation of RBa2Cu3O7films on substrates with low
lattice mismatch via seed layer formation. IEEE
Transactions on Applied Superconductivity. 2011;21(3):
3066–3069. https://doi.org/10.1109/TASC.2010.2102992
14. Granozio F. M., Salluzzo M., Scotti di Uccio U.,
Maggio-Aprile I., Fischer O. Competition between a-axis
and c-axis growth in superconducting RBa2Cu3O7−x thin
films. Phys. Rev. B. 2000;61(1): 756–765. https://doi.org/10.1103/PhysRevB.61.756
15. Jeschke R. Schneider G. Ulmer G. Linker
influence of the substrate material on the growth
direction of YBaCuO thin films. Physica C. 1995;243:
243–251. https://doi.org/10.1016/0921-4534(95)00019‑4
16. Moyzykh M., Boytsova O., Amelichev V,
Samoilenkov S., Voloshin I., Kaul A., Lacroix B.,
Paumier F., Gaboriaud R. Effects of yttrium oxide
inclusions on the orientation and superconducting
properties of YBCO films. Kondensirovannye sredy i
mezhfaznye granitsy = Condensed Matter and Interphases.
2013;15(2): 91-98. Available at: http://www.kcmf.vsu.ru/resources/t_15_2_2013_001.pdf
17. 2G HTS Wire Specification Overview. Available
at: http://www.superpower-inc.com/system/filesSP_2G+Wire+Spec+Sheet_2014_web_v1_0.pdf
(accessed 29 October 2016).
18. Murakami M., Gotoh S., Fujimoto H., Yamaguchi K., Koshizuka N., Tanaka S. Flux pinning and
critical currents in melt processed YBaCuO
superconductors. Superconductor Science and
Technology . 1991;4: S43–S50. https://doi.org/10.1088/0953-2048/4/1S/005
19. Zhao P., Ito A., Goto T. Rapid deposition of
YBCO films by laser CVD and effect of lattice mismatch
on their epitaxial growth and critical temperature.
Ceramics International. 2013;39: 7491–7497. https://doi.org/10.1016/j.ceramint.2013.02.098
20. Zhao P., Ito A., Goto T., Tu R. High-speed
growth of YBa2Cu3O7−d film with high critical
temperature on MgO single crystal substrate by laser
chemical vapor deposition. Superconductor Science and
Technology. 2010;23(12): 125010. https://doi.org/10.1088/0953-2048/23/12/125010
21. Zhao P., Ito A., Goto T., Tu R. Fast epitaxial
growth of a-axis- and c-axis-oriented YBa2Cu3O7–dfilms on (1 0 0) LaAlO3
substrate by laser chemical vapor
deposition. Applied Surface Science. 2010;257: 4317–
4320. https://doi.org/10.1016/j.apsusc.2010.12.047
22. Hammond R. H., Bormann R. Correlation
between the in situ growth conditions of YBCO thin
films and the thermodynamic stability criteria. Physica
C. 1989;162-164: 703–704. https://doi.org/10.1016/0921-4534(89)91218-5
23. Voronin G. F., Degterov S. A. Solid State
Equilibria in the Ba-Cu-O System. J. Solid State Chem.
1994;110(1): 50–57. (and references therein). https://doi.org/10.1006/jssc.1994.1134
24. Lindemer T. B., Specht E. D. The BaO-Cu-CuO
system. Solid-liquid equilibria and thermodynamics
of BaCuO2and BaCu2O2. Physica C. 1995;255(1-2):
81–94. (and references therein). https://doi.org/10.1016/0921-4534(95)00460-2
25. Samoylenkov S. V., Gorbenko O. Yu, Graboy I.
E., Kaul A. R., Zandbergen H. W., Connolly E. Secondary
phases in (001)RBa2Cu3O7–d
epitaxial thin films.
Chemistry of Materials. 1999:11(9): 2417–2428. https://doi.org/10.1021/cm991016v
26. Kaul A. R., Gorbenko O. Yu., Kamenev A. A. The
role of heteroepitaxy in the development of new thin film oxide-based functional materials. Russian
Chemical Reviews. 2004;73(9): 932–953. https://doi.org/10.1070/RC2004v073n09ABEH000919
27. Murakami Y., Goto H., Taguchi Y., Nagasaka Y.
Measurement of out-of-plane thermal conductivity of
epitaxial YBa2Cu3O7–dthin films in the temperature
range from 10 K to 300 K by photothermal reflectance.
International Journal of Thermophysics. 2017;38(10):
160. https://doi.org/10.1007/s10765-017-2294-7
28. Agababov S. G., Vliyanie sherohovatosti
poverhnosti tverdogo tela na ego radiatsionnie
svoistva I metody ih eksperimentalnogo opredeleniya
[Influence of the surface roughness of a solid on its
radiation properties and methods of their experimental
determination]. Teplofizika visokih temperatur.
1968;6(1): 78–88. (In Russ.)
29. Sayapina V. I., Svet D. Ya., Popova О. R., Vliyanie
sherohovatosti poverhnosti na izluchatelnuyu
sposobnost metallov [Influence of surface roughness
on the emissivity of metals]. Teplofizika visokih
temperatur. 1972;10(3): 528–535. (In Russ.)
30. Mukaida M., Miyazawa S. Nature of preferred
orientation of YBa2Cu3Ox
thin films. Japanese Journal
of Applied Physics. 1993;32(10): 4521–4528. https://doi.org/10.1143/jjap.32.4521
31. Markelov A. V. The influence of buffer layers on
the oriented growth of RBa2Cu3O7–d (R – rare earth
element) films and their superconducting characteristics.
Thesis of Cand. in Chem. Moscow: MSU (Lomonosov University); 2011. 108р.
Downloads
References
Fleshler S., Buczek D., Carter B., Ogata M. Scaleup of 2G wire manufacturing at American Superconductor Corporation. Physica C. 2009;469(15-20): 1316–1321. https://doi.org/10.1016/j.physc.2009.05.234
Nagaishi T., Shingai Y., Konishi M., Taneda T., Ota H., Honda G., Kato T., Ohmatsu K. Development of REBCO coated conductors on textured metallic substrates. Physica C. 2009;469(15-20): 1311–1315. https://doi.org/10.1016/j.physc.2009.05.253
Rosner C. H. Superconductivity: star technology for the 21st century. IEEE Transactions on Applied Superconductivity. 2001;11(1): 39–48. https://doi.org/10.1109/77.919283
Mansour R. R. Microwave superconductivity. IEEE Transactions on Microwave Theory and Techniques. 2002; 50(3): 750–759. https://doi.org/10.1109/22.989959
Hayakawa H., Yoshikawa N., Yorozu S., Fujimaki A. Superconducting digital electronics. Proceedings of the IEEE. 2004;92(10): 1549–1563. https://doi.org/10.1109/JPROC.2004.833658
Wimbush S. C. Large scale applications of HTS in New Zealand. Physics Procedia. 2015;65: 221–224. https://doi.org/10.1016/j.phpro.2015.05.125
Zhu J., Zheng X., Qiu M., Zhang Z., Li J., Yuan W. Application simulation of a resistive type superconducting fault current limiter (SFCL) in a transmission and wind power system. Energy Procedia. 2015;75: 716–721. https://doi.org/10.1016/j.egypro.2015.07.498
Iwasaki H., Inaba S., Sugioka K., Nozaki Y., Kobayashi N. Superconducting anisotropy in the Y-based system substituted for the Y, Ba and Cu sites. Physica C. 1997;290: 113. https://doi.org/10.1016/S0921-4534(97)00634-5
Freyhardt H. C., Hellstrom E. E. High-temperature superconductors: A Review of YBa2Cu3O6+x and (Bi,Pb)2Sr2Ca2Cu3O10. Cryogenic Engineering. New York: Springer; 2007. pp. 309–339.
https://doi.org/10.1007/0-387-46896-X
Dimos D. , Chaudhari P. , Mannhart J. Superconducting transport properties of grain boundaries in Ba2Cu3O7 bicrystals. Phys. Rev. B. 1990;41: 4038–4049. http://dx.doi.org/10.1103/PhysRevB.41.4038
Goyal A. (ed.) Second-Generation HTS Conductors. Boston/Dordrecht/New York/London: Kluwer Academic Publ.; 2009. 432 p.
Zhang H., Yang J., Wang S., Wu Y., Lv Q., Li S. Film thickness dependence of microstructure and superconductive property of PLD prepared YBCO layers. Physica C. 2014;499: 54–56. https://doi.org/10.1016/j.physc.2014.01.001
Markelov A. V., Samoilenkov S. V., Akbashev A. R., Vasiliev A. L., Kaul A. R. Control of orientation of RBa2Cu3O7 films on substrates with low lattice mismatch via seed layer formation. IEEE Transactions on Applied uperconductivity. 2011;21(3): 3066–3069. https://doi.org/10.1109/TASC.2010.2102992
Granozio F. M., Salluzzo M., Scotti di Uccio U., Maggio-Aprile I., Fischer O. Competition between a-axis and c-axis growth in superconducting RBa2Cu3O7−x thin films. Phys. Rev. B. 2000;61(1): 756–765. https://doi.org/10.1103/PhysRevB.61.756
Jeschke R. Schneider G. Ulmer G. Linker influence of the substrate material on the growth direction of YBaCuO thin films. Physica C. 1995;243: 243–251. https://doi.org/10.1016/0921-4534(95)00019‑4
Moyzykh M., Boytsova O., Amelichev V, Samoilenkov S., Voloshin I., Kaul A., Lacroix B., Paumier F., Gaboriaud R. Effects of yttrium oxide inclusions on the orientation and superconducting properties of YBCO films. kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2013;15(2): 91-98. Available at: http://www.kcmf.vsu.ru/resources/t_15_2_2013_001.pdf
2G HTS Wire Specification Overview. Available at: http://www.superpower-inc.com/system/files/SP_2G+Wire+Spec+Sheet_2014_web_v1_0.pdf (accessed 29 October 2016).
Murakami M., Gotoh S., Fujimoto H., Yamaguchi K., Koshizuka N., Tanaka S. Flux pinning and critical currents in melt processed YBaCuO superconductors. Superconductor Science and Technology. 1991; 4: S43–S50. https://doi.org/10.1088/0953-2048/4/1S/005
Zhao P., Ito A., Goto T. Rapid deposition of YBCO films by laser CVD and effect of lattice mismatch on their epitaxial growth and critical temperature. Ceramics International. 2013;39: 7491–7497. https://doi.org/10.1016/j.ceramint.2013.02.098
Zhao P., Ito A., Goto T., Tu R. High-speed growth of YBa2Cu3O7−d film with high critical temperature on MgO single crystal substrate by laser chemical vapor deposition. Superconductor Science and Technology. 2010;23(12): 125010. https://doi.org/10.1088/0953-2048/23/12/125010
Zhao P., Ito A., Goto T., Tu R. Fast epitaxial growth of a-axis- and c-axis-oriented YBa2Cu3O7–d films on (1 0 0) LaAlO3 substrate by laser chemical vapor deposition. Applied Surface Science. 2010;257: 4317–4320. https://doi.org/10.1016/j.apsusc.2010.12.047
Hammond R. H., Bormann R. Correlation between the in situ growth conditions of YBCO thin films and the thermodynamic stability criteria. Physica C. 1989;162-164: 703–704. https://doi.org/10.1016/0921-4534(89)91218-5
Voronin G. F., Degterov S. A. Solid State Equilibria in the Ba-Cu-O System. J. Solid State Chem. 1994;110(1): 50–57. (and references therein). https://doi.org/10.1006/jssc.1994.1134
Lindemer T. B., Specht E. D. The BaO-Cu-CuO system. Solid-liquid equilibria and thermodynamics of BaCuO2 and BaCu2O2. Physica C. 1995;255(1-2): 81–94. (and references therein).
https://doi.org/10.1016/0921-4534(95)00460-2
Samoylenkov S. V., Gorbenko O. Yu, Graboy I. E., Kaul A. R., Zandbergen H. W., Connolly E. Secondary phases in (001)RBa2Cu3O7–d epitaxial thin films. Chemistry of Materials. 1999:11(9): 2417–2428. https://doi.org/10.1021/cm991016v
Kaul A. R., Gorbenko O. Yu., Kamenev A. A. The role of heteroepitaxy in the development of new thinfilm oxide-based functional materials. Russian Chemical Reviews. 2004;73(9): 932–953. https://doi.org/10.1070/RC2004v073n09ABEH000919
Murakami Y., Goto H., Taguchi Y., Nagasaka Y. Measurement of out-of-plane thermal conductivity of epitaxial YBa2Cu3O7–d thin films in the temperature range from 10 K to 300 K by photothermal reflectance. International Journal of Thermophysics. 2017;38(10):160. https://doi.org/10.1007/s10765-017-2294-7
Agababov S. G., Vliyanie sherohovatosti poverhnosti tverdogo tela na ego radiatsionnie svoistva I metody ih eksperimentalnogo opredeleniya [Influence of the surface roughness of a solid on its radiation properties and methods of their experimental determination]. Teplofizika visokih temperatur. 1968;6(1): 78–88. (In Russ.)
Sayapina V. I., Svet D. Ya., Popova О. R., Vliyanie sherohovatosti poverhnosti na izluchatelnuyu sposobnost metallov [Influence of surface roughness on the emissivity of metals]. Teplofizika visokih temperatur. 1972;10(3): 528–535. (In Russ.)
Mukaida M., Miyazawa S. Nature of preferred orientation of YBa2Cu3Ox thin films. Japanese Journal of Applied Physics. 1993;32(10): 4521–4528. https://doi.org/10.1143/jjap.32.4521
Markelov A. V. The influence of buffer layers on the oriented growth of RBa2Cu3O7–d (R – rare earth element) films and their superconducting characteristics. Thesis of Cand. in Chem. Moscow: MSU (Lomonosov University); 2011. 108 p.
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.