An integral feature of porous silicon and its classification
Abstract
Porous silicon is currently one of the most studied materials which is used both in the areas traditional for silicon, such as electronics and optoelectronics, and in completely unconventional ones, such as catalysis, energetics, biology, and medicine. The multiple possibilities of the material are revealed due to the fact that its structure can be radically different depending on the properties of the initial silicon and the methods of obtaining porous phases. The use of any material inevitably leads to the need to classify its various forms. The purpose of the article was to find the most significant parameter that can be used as the basis for the classification of porous silicon.
Historically, the terminology defined by the IUPAC pore size classification has been used to classify porous silicon. Due to the authority of IUPAC, many researchers have considered this terminology to be the most successful and important, and the radial pore size has often been regarded as a main parameter containing the most important properties of porous silicon. Meanwhile, the unique properties and practical application of porous silicon are based on its developed inner surface. The method of nitrogen porosimetry, which is simple in its practical implementation, is often used in scientific literature to determine this value.
The most suitable integral parameter for the classification of porous silicon, regardless of its structure and morphology, is the total specific internal surface (cm-1) that can be relatively easily established experimentally and is of fundamental importance for almost all applications of porous silicon. The use of this value does not exclude the use of other parameters for a more detailed classification
Downloads
References
Canham L. (ed.). Handbook of porous silicon. Springer International Publishing Switzerland, 2014. 1024 p. https://doi.org/10.1007/978-3-319-05744-6
Ishchenko A. A., Fetisov G. V., Aslanov P. A. Nanokremnii: svoistva, poluchenie, primenenie, metody ispol’zovaniya i kontrolya [Nanosilicon: properties, production, application, methods of use and control]. Moscow: FIZMATLIT Publ., 2011. 648 p. Available at: https://biblioclub.ru/index.php?page=book&id=457660 (In Russ.)
Jia H., Li X., Song J. et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nature Communications. 2020;11(1): 1474. https://doi.org/10.1038/s41467-020-15217-9
Collins J., de Souza J. P., Hopstaken M., Ott J. A., Bedell S. W., Sadana D. K. Diffusion-controlled porous crystalline silicon lithium metal batteries. iScience. 2020;23(10): 101586. https://doi.org/10.1016/j.isci.2020.101586
Paczesny J., Richter Ł., Hołyst R. Recent progress in the detection of bacteria using bacteriophages. A Review. Viruses. 2020;12(8): 845. https://doi.org/10.3390/v12080845
Gongalsky M. B., Sviridov A. P., Bezsudnova Y. I., Osminkina L. A. Biodegradation model of porous silicon nanoparticles. Colloids and Surfaces B: Biointerfaces. 2020;190: 110946. https://doi.org/10.1016/j.colsurfb.2020.110946
Manual of symbols and terminology for physicochemical quantities and units. Pure and Applied Chemistry. 1979:51(1): 1–41. https://doi.org/10.1351/pac197951010001
Compendium of chemical terminology gold book. International union of pure and applied chemistry. Version 2.3.3 2014-02-24. IUPAC Compendium of Chemical Terminology. Available at: https://goldbook.iupac.org/files/pdf/goldbook.pdf
Yuzova V. A., Levitsky A. A., Harlashin P. A. Development technology of creation and research porous silicon. Journal of Siberian Federal University. Engineering and Technologies. 2011;4(1): 92–112. Available at: https://elibrary.ru/item.asp?id=15610067 (In Russ., abstract in Eng.)
Lenshin A. S., Kashkarov V. M., Seredin P. V., Spivak Yu. M., Moshnikov V. A. XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n- and p-type substrates. Semiconductors. 2011;45: 1183. ttps://doi.org/10.1134/S1063782611090168
Fandeev V. P., Samokhina K. S. Research methods of porous structures. Internet journal “Science Science”. 2015;7(4). Available at: http://naukovedenie.ru/PDF/34TVN415.pdf (In Russ., abstract in Eng.)
Zimon A. D. Karliki. Nanochasticy v populjarnom izlozhenii [Dwarfs. Popular presentation of nanoparticles]. Moscow: Nauchnyj mir Publ., 2012. 160 p. (In Russ.)
Zharova Ju. A., Fedulova G. V., Astrova E. V., Baldycheva A. V., Tolmachev V. A., Perova T. S. Fabrication technology of heterojunctions in the lattice of a 2D photonic crystal based on macroporous silicon. Semiconductors. 2011;45(8): 1103-1110. https://doi.org/10.1134/s1063782611080239
Kashkarov V. M., Len’shin A. S., Seredin P. V., Agapov B. L., Cipenjuk V. N. Chemical modification of porous and corrugated silicon surfaces in polyacrylic acid solutions. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2012;6(5): 776–781. https://doi.org/10.1134/S1027451012090078
Amdouni S., Rahmani M., Zaïbi M.-A, Oueslati M. Enhancement of porous silicon photoluminescence by electroless deposition of nickel. Journal of Luminescence. 2015;157: 93–97. https://doi.org/10.1016/j.jlumin.2014.08.041
Santos H. A, Bimbo L. M, Lehto V. P, Airaksinen A. J, Salonen J., Hirvonen J. Multifunctional porous silicon for therapeutic drug delivery and imaging. Current Drug Discovery Technologies. 2011;8(3): 228- 249. https://doi.org/10.2174/157016311796799053
Lenshin A. S., Seredin P. V., Agapov B. L., Minakov D. A., Kashkarov V. M. Preparation and egradation of the optical properties of nano-, meso‑, and macroporous silicon. Materials Science in Semiconductor Processing. 2015;30(2): 25-30. https://doi.org/10.1016/j.mssp.2014.09.040
Len’shin A. S., Kashkarov V. M., Turishchev S. Yu., Smirnov M. S., Domashevskaya E. P. Influence of natural aging on photoluminescence from porous silicon. Technical Physics. 2012;57(2): 305–307. https://doi.org/10.1134/s1063784212020156
Turishchev S. Yu., Terehov V. A., Nesterov D. N., Koltygina K. G., Parinova E. V., Kojuda D. A, Schleusener A., Sivakov V., Domashevskaya E. P. Electronic structure of silicon nanowires formed by the MAWCE method. Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases. 2016;18(1): 130–141. Available at: https://elibrar y.ru/item.asp?id=25946634 (In Russ., abstract in Eng.)
Travkin P. G., Vorontsova N. V., Vysotskiy S. A., Lenshin A. S., Spivak Yu. M., Moshnikov V. A. Study of regularities of porous silicon structure formation with multistage modes of electrochemical etching. Proceedings of Saint Petersburg Electrotechnical University. 2011;4: 3–8. https://elibrary.ru/item.asp?d=16313017 (In Russ.)
Len’shin A. S., Kashkarov V. M., Turishchev S. Yu., Smirnov M. S., Domashevskaya E. P. Effect of natural aging on photoluminescence of porous silicon. Technical Physics Letters. 2011;37(9): 789–792. https://doi.org/10.1134/s1063785011090124
Lenshin A. S., Kashkarov V. M., Seredin P. V., Minakov D. A., Agapov B. L., Kuznetsova M. A., Moshnikov V. A., Domashevskaya E. P. Study of the morphological growth features and optical characteristics of multilayer porous silicon samples grown on n-type substrates with an epitaxially deposited p+-layer. Semiconductors. 2012;46(8):
–1084. https://doi.org/10.1134/s1063782612080131
Khenkin M. V., Emelyanov A. V., Kazanskii A. G., Forsh P. A., Kashkarov P. K., Terukov E. I., Orekhov D. L., Roca i Cabarrocas P. Influence of the fabrication conditions of polymorphous silicon films on their structural, electrical and optical properties Semiconductors. 2013;47(9): 1271–1274. https://doi.org/10.1134/s1063782613090108
Lenshin A. S., Maraeva E. V. Studying specific surface area of perspective porous materials and nanostructures by nitrogen thermal desorption method. Proceedings of Saint Petersburg Electrotechnical University. 2011;6: 9–16. Available at: https://elibrary.ru/item.asp?id=16403450 (In Russ.)
Karnaukhov A. P. Adsorbtsiya. Tekstura dispersnykh i poristykh materialov [Adsorption. The texture of dispersed and porous materials]. Novosibirsk: Nauka Publ., 1999. 470 p. Available at: https://www.booksite.ru/localtxt/kar/nau/hov/text.pdf (In Russ.)
Levitskiy V. S., Lenshin A. S., Maximov A. I., Maraeva E. V., Moshnikov V. A. Investigation of formation porous structures in sol– gel systems by silicon oxide and oxides of metals. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering. 2012;4: 48–54. https://doi.org/10.17073/1609-3577-2012-4-48-53
Arroyo-Hernández M., Martín-Palma R. J., Torres-Costa V., Martínez Duar J. M. Porous silicon optical filters for biosensing applications. Journal of Non-Crystalline Solids. 2006;352(23-25): 2457–2460. https://doi.org/10.1016/j.jnoncrysol.2006.02.075
Tutov E. A., Pavlenko M. N., Tutov E. E., Protasova I. V., Bormontov E. N. Equilibrium and nonequilibrium electrode processes on porous silicon. Technical Physics Letters. 2006;32(13): 558–560. https://doi.org/10.1134/s1063785006070029
Sviridov A. P., Andreev V. G., Ivanova E. M., Osminkina L. A., Tamarov K. P., Timoshenko V. Y. Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia. Applied Physics Letters, 2013; 103(19), 193110. https://doi.org/10.1063/1.4829148
Kotkovskiy G. E., Kuzischin Yu. A., Martynov I. L., Nabiev I. R., Chistyakov A. A. Fotofizicheskie svojstva poristogo kremnija i ego primenenie v tehnike i biomedicine [Photophysical properties of porous silicon and its application in engineering and biomedicine]. Nuclear Physics and Engineering. 2013;4(2): 174–192. https://doi.org/10.1134/s2079562913020073 (In Russ.)
Copyright (c) 2021 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.