• N. E. Kuleshova engineering of the Physical Chemistry Department, Voronezh State University; tel.: +7 (473) 2208538, e-mail
  • A. V. Vvedenskii Dr. Sci. (Chem.), Professor, Chief of the Physical Chemistry Department, Voronezh State University, tel.: +7 (473) 2208546, e-mail:
  • E. V. Bobrinskaya Cand. Sci. (Chem.), Associate Professor of the Physical Chemistry Department, Voronezh State University; tel.: +7 (473) 2208538, e-mail:
Keywords: serine, amino acid, electrooxidation, voltammetry.


The task of the work was to establish the influence of the charge state serine determined by the pH value of the medium on kinetic regularities and quantitative characteristics of the process of   its anodic oxidation on a platinized platinum electrode.

The study was performed by the methods of voltammetry, coulometry, rotating disk electrode and IR-spectroscopy with Fourier transform.  As base solutions used 0.1 M  NaOH, 0.05 M  solution of H2SO4 and acetate buffer  with a concentration of salt and acid, 0.5 M and 0.05 M, respectively. 

The electrode potentials region of the electrochemical conversion of the amino acid was determined.  The current of oxidation of anion serine is significantly higher,  than cation or zwitterionic form. This can be explained by difference in adsorption activity of anion serine on the surface  of platinized platinum.  The concentration of the various ionic forms of serine in solution before and after electrooxidation was determined photometrically.

It is shown that serine electrooxidation occurs with the participation of 2 electrons in acidic and alkaline environments, whereas zwitterion oxidation is accompanied by 4 electrons transfer. It is established that electrooxidation  of serine is carried out from an adsorbed state regardless of solution pH. The possible kinetic scheme of the electrooxidation process is proposed. The rate of electrooxidation of the cation or anion of serine is determined by the stage of transfer of the first electron.  The rate of electrooxidation of zwitterion of serine is determined by the stage of transfer of the second electron. Electrooxidation of all ionic forms of serine is kinetically irreversible.



Download data is not yet available.


1. Tukavkina N. A. Bioorganicheskaya khimiya [Bioorganic Chemistry]: A Textbook for Universities. Moscow, Drofa Publ., 2005, 542 p. (in Russ.)
2. Gu Yan-Juan, Sun Shi-Gang, Chen Sheng-Pei, Zhen Chun-Hua, Zhou Zhi-You. Langmuir, 2003, vol. 19, pp. 9823-9830. DOI: 10.1021/la034758i
3. Huerta F., Morallon E., Cases F., Rodes A., Vazquez J. L., Aldaz A. J. Electroanal. Chem., 1997, vol. 431, pp. 269-275. DOI: 10.1016/S0022-0728(97)00212-X
4. Huerta F., Morallon E., Vasquez P., Jose L., Aldaz A. J. Electroanal. Chem., 1999. vol. 475, pp. 38-45. DOI: 10.1016/s0022-0728(99)00337-x
5. Horanyi G. A. J. Electroanal. Chem., 1991, vol. 304, pp. 211-217. DOI: 10.1016/0022-0728(91)85503-h
6. Huerta F., Morallón E., Pérez J. M., Vázquez J. L., Aldaz A. J. Electroanal. Chem., 2000, vol. 489, pp. 92-95. DOI: 10.1016/s0022-0728(00)00202-3
7. Kong De-Wen, Huan-Wen Chen, Ming Li, Wei Jin, Qin-han Jin, Jian Zheng. Chem. J. Chinese Universities, 2009, vol. 30, № 10, p. 2040.
8. Xiao X. Y., Sun, S. G., Yao J. L., Wu, Q. H., Tian Z. Q. Langmuir, 2002, vol. 18, pp. 6274-6279. DOI: 10.1021/la025817f
9. Safonova T. Y., Hidirov Sh. Sh., Petrii O. A. Russ. J. Electrochem., 1984, vol. 20 (12), p. 1666. (in Russ.)
10. Tumanova E. A., Safonov A. U. Russ. J. Electrochem., 1998, vol. 34 (2), p. 170. (in Russ.)
11. Ogura K., Kobayashi M., Nakayama M., Miho Y. J. Electroanal. Chem., 1999, vol. 463, pp. 218-223. DOI: 10.1016/s0022-0728(98)00458-6
12. Vvedenskii A. V., Bobrinskaya E. V., Kraschenko T. G., Vitnova O. A., Kuleshova N. E. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2013, no. 2, pp. 19-26. Available at:
13. Kraschenko T. G., Vvedenskii A. V., Bobrinskaya E. V., Kuleshova N. E. Condensed Matter and Interphase, 2014, vol. 16, no. 1, pp. 42-49. Available at:
14. Vvedenskii A. V., Bobrinskaya E. V., Kraschenko T. G., Kartashova T. V. Electrooxidation of Glycine and a-Alanine on Platinum: Linear-Sweep Voltammetry and FTIR Analysis. Voltammetry: Theory, Types and Applications. New York (USA), 2014, p. 293.
15. Damaskin B. B., Petrii O. A., Tsyrlina G. A. Electrokhimiya [Electrochemistry]. Moscow, Khimiya Publ., 2001,623 p. (in Russ.)
16. Damaskin B. B., Petrii O. A. Vvedenie v electrokhimiceskyu kinetiku [Introduction to Electrochemical Kinetics]. Moscow, Vyshaya Shkola Publ., 1983, 399 p. (in Russ.)
17. Frumkin A. N., Bagotskii V. S., Iofa Z. A. Kabanov B. N. Kinetika elektrodnyh processov [Kinetics of Electrode Processes]. Moscow, Izdat. Moskovs. Universiteta Publ., 1952, 319 p. (in Russ.)
18. Doson R., Eliot D., Eliot U., Djons K. Spravochnic biokhimika [Biochemistry Handbook]. Mir Publ., 1991, 543 p. (in Russ.)
19. Simonyan A. V., SalamatovA. A., Pokrovskaya U. S., Avanesyan A. A. Ispolzovanie ninhidrinovoii reaktsii dlya kolichestvennogo opredeleniya -aminokislot v razlichnukh objektakh:metodich. Rekomendatsii [The Use of Ninhydrin Reaction for the Quantitative Determination of α - Amino Acids in Various Objects: Methodical Recommendations]. Volgograd, VOGMU Publ., 2007, 106 p. (in Russ.)
20. Tarasevich B. N. IK spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy [The IR Spectra of the Main Classes of Organic Compounds. Handbook]. Moscow, MGU Publ., 2012, 54 p. (in Russ.)
21. Romanovskii I. V. Osnovy bioorganicheskoii khimii. Vol. 1. Tepreticheskie osnovy bioorganicheskoii khimii [Bases of Bioorganic Chemistry. Part 1: Theoretical Foundations of Bioorganic Chemistry]. Minsk, BMGU Publ., 2004, 119 p. (in Russ.).
22. Bratseva I. A., Goncharov V. I. Bioorganicheskaya khimiya. Uchebnoe posobie [Bioorganic Chemistry. Tutorial], Stavropol, SGMA Publ., 2010, 196 p. (in Russ.)
23. Grandberg I. I. Organicheskaya khimiya [Organic Chemistry]. Moscow, Drofa Publ., 2002, 454 p. (in Russ.)
24. Greenstein, J. P. and Winitz, M. The Chemistry of the Amino Acids, Vol. I-III, Wiley & Sons, N.Y. 1961. 2872 p.
25. Vvedenskii A. V., Bobrinskaya E. V., Kartashova T. V. Condensed Matter and Interphase, 2006, vol. 8, no. 4, pp. 264-272. Available at: (in Russ.)
26. Laviron E. J. Electroanal. Chem., 1975, vol. 63, pp. 245-261. DOI: 10.1016/0368-1874(75)80059-1
27. Laviron E. J. Electroanal. Chem., 1995, vol. 382, pp. 111-127. DOI: 10.1016/0022-0728(94)03684-u
28. Scholz F. Electroanalytical Methods. Guide to Experiments and Applications. Springer-Verlag Berlin Heidelberg, 2005, 319 p. DOI: 10.10071978-3-662-04757-6
29. Bockris J. O` M., U. Shahed M. K. Surface Electrochemistry: a Molecular Level Approach. Plenum Press: N. Y., London, 1993, 1014 p.
How to Cite
Kuleshova, N. E., Vvedenskii, A. V., & Bobrinskaya, E. V. (2018). ANODIC OXIDATION OF DIFFERENT IONIC FORMS OF SERINE ON THE Pt(Pt)-ELECTRODE. Condensed Matter and Interphases, 20(1), 75-83.