• M. A. Sukmanova graduate student, Solid State Physic and Nanostructures Department, Voronezh State University; tel.: +7(900) 9519613 e-mail:
  • S. I. Kurganskii Dr. Sci. (Phys.-Math.), Full Professor, Solid State Physic and Nanostructures Department, Voronezh State University; tel.: +7(473) 2208363, e-mail:
Keywords: computer modeling, density functional theory, density of states, band structure, hematite.


The results of ab initio computer modeling of the electronic structure of bulk rhomboedral hematite (α-Fe2O3) are presented. The spectra of total and local partial densities and bandstructures for both spin directions have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method together with conventional and modified density-functional approaches at LSDA, GGA, LSDA + U and GGA + U levels. Using conventional LSDA and GGA functional we obtain following results. The magnetic moments of the Fe atoms and the band gap are too small. Also, the character of the gap contradicts the accepted charge-transfer character. Analysis of the density of states confirms the strong hybridization between Fe 3d and O 2p states at the top of the valence band. The DFT + U calculations were performed in order to take into account the strong on-site Coulomb interaction between 3d-electrons of Fe atoms. Introducing a Hubbard like term in the density functional results in strongly improved values for magnetic moments, band gap as well as in better agreement of the calculated density of states with experimental PES spectra. We found that with increasing parameter U (at LSDA and GGA levels alike) the size of the band gap and the local magnetic moments of Fe increase. Best overall agreements with respect to experimental values of the band gap, magnetic moments and to experimental photoemission spectra of hematite, is achieved for U = 5 eV. Also, an important result of this study is the fundamental change in the semiconducting gap from a d-d exchange gap to an O 2p–Fe 3d charge-transfer gap, together with change of the highest occupied valence states from strongly hybridized O 2p –Fe 3d to almost pure O 2p character.




Calculations were carried out at the computing facilities of the Data Processing Center (DPC) of Voronezh State University.



Download data is not yet available.


1. Liger E., Charlet L., Cappellen P. Van. Geochimica et Cosmochimica Acta, 1999, vol. 63, no. 19, pp. 2939 - 2955. DOI: 10.1016/S0016-7037(99)00265-3
2. Herrera F., Lopez A., Mascolo G., Albers P., Kiwi J. Applied Catalysis B: Environmental, 2001, vol. 29, no. 2, pp. 147 - 162. DOI: 10.1016/S0926-3373(00)00198-3
3. Shekhah O., Ranke W., Schüle A., Kolios G., Schlögl R. Angewandte Chemie International Edition, 2003, vol. 42, no. 46, pp. 5760 - 5763.
4. Patzke G. R., Zhou Y., Kontic R., Conrad F. Angewandte Chemie International Edition, 2011, vol. 50, no. 4, pp. 826 - 859.
5. Choi W. S., Koo H. Y., Zhongbin Z., Li Y., Kim D‐Y. Advanced Functional Materials, 2007, vol. 17, no. 11, pp. 1743 - 1749. DOI: 10.1002/adfm.200601002
6. Gou X., Wang G., Park J., Liu H., Yang J. Nanotechnology, 2008, vol. 19, no. 12, p. 125606. DOI: 10.1088/0957-4484/19/12/125606
7. Wu C., Yin P., Zhu X., OuYang C., Xie Y. The Journal of Physical Chemistry B, 2006, vol. 110, no. 36, pp. 17806 - 17812. DOI: 10.1021/jp0633906
8. Zeng S., Tang K., Li T., Liang Z., Wang D., Wang Y., Zhou W. The Journal of Physical Chemistry C, 2007, vol. 111, no. 28, pp. 10217 - 10225. DOI: 10.1021/jp0768773
9. Wu Z., Yu K., Zhang S., Xie Y. The Journal of Physical Chemistry C, 2008, vol. 112, no. 30, pp. 11307 - 11313. DOI: 0.1021/jp803582d
10. Christensen P. R., Morris R. V., Lane M. D., Bandfield J. L., Malin M. C. J. Geophys. Res., 2001, vol. 106, no. 10, pp. 23873 - 23885. DOI: 10.1029/2000JE001415
11. Fleischer L., Agresti D. G., Klingelhöfer G., Morris R. V. Journal of Geophysical Research: Planets, 2010, vol. 115, no. E7. DOI: 10.1029/2010JE003621
12. Beermann N., Vayssieres L., Lindquist S.‐E., Hagfeldt A. Journal of the Electrochemical Society, 2000, vol. 147, no. 7, pp. 2456-2461. DOI: 10.1149/1.1393553
13. Mor G. K., Prakasam H. E., Varghese O. K., Shankar K., Grimes C. A. Nano letters, 2007, vol. 7, no. 8, pp. 2356-2364. DOI: 10.1021/nl0710046
14. Lopes T., Andrade L., Ribeiro H. A., Mendes A. International Journal of Hydrogen Energy, 2010, vol. 35, no. 20, pp. 11601-11608. DOI: 10.1016/j.ijhydene.2010.04.001
15. Mochizuki S. Phys. Status Solidi A, 1977, vol. 41, no. 2, pp. 591-594. DOI: 10.1002/pssa.2210410232
16. Glasscock J. A., Barnes P. R. F., Plumb I. C., Bendavid A., Martin P. J. Thin Solid Films, 2008, vol. 516, no. 8, pp. 1716-1724. DOI: 10.1016/j.tsf.2007.05.020
17. Wang D., Wang Q., Wang T. Nanotechnology, 2011, vol. 22, no. 13. p. 135604. DOI: 10.1088/0957-4484/22/13/135604
18. Xu P., Zeng G. M., Huang D. L., Feng C. L., Hu S., Zhao M. H., Lei C. Science of the Total Environment, 2012, vol. 424, pp. 1-10. DOI: 10.1016/j.scitotenv.2012.02.023
19. Chirita M., Grozescu I., Taubert L., Radulescu H., Princz E., Stefanovits-Bányai É., Caramalau C., Bulgariu L., Macoveanu M., Muntean C. Chem. Bull., 2009, vol. 54, no. 1.
20. Wu C., Yin P., Zhu X., OuYang C., Xie Y. // The Journal of Physical Chemistry B, 2006, vol. 110, no. 36, pp. 17806 - 17812. DOI: 10.1021/jp0633906
21. Fujimori A., Saeki M., Kimizuka N., Taniguchi M., Suga S. Physical Review B., 1986, vol. 34, no. 10, p. 7318. DOI: 10.1103/PhysRevB.34.7318
22. Lad R. J., Henrich V. E. Physical Review B, 1989, vol. 39, no. 18, p. 13478. DOI: 10.1103/PhysRevB.39.13478
23. Ciccacci F., Braicovich L., Puppin E., Vescovo E. Physical Review B, 1991, vol. 44, no. 19, p. 10444. DOI: 10.1103/PhysRevB.44.10444
24. Dräger G., Czolbe W., Leiro J. A. Physical Review B, 1992, vol. 45, no. 15, p. 8283. DOI: 10.1103/PhysRevB.45.8283
25. Mott N. F., Peierls R. Proceedings of the Physical Society, 1937, vol. 49, no. 4S, p. 72.
26. Catti M., Valerio G., Dovesi R. Physical Review B, 1995, vol. 51, no. 12, p. 7441. DOI: 10.1103/PhysRevB.51.7441
27. Finger L. W., Hazen R. M. Journal of Applied Physics, 1980, vol. 51, no. 10, pp. 5362-5367. DOI: 10.1063/1.327451
28. Kokalj A. Comp. Mater. Sci., 2003, vol. 28, p. 155. DOI: 10.1016/S0927-0256(03)00104-6
29. Sato Y., Akimoto S. Journal of Applied Physics, 1979, vol. 50, no. 8, pp. 5285-5291. DOI: 10.1063/1.326625
30. Liechtenstein A. I., Anisimov V. I., Zaanen J. Phys. Rev. B, 1995, vol. 52, no. 8, pp. R5467-R5470. DOI: 10.1103/PhysRevB.52.R5467
31. Huda M. N., Walsh A., Yan Y., Wei S.-H., Al-Jassim M. M. J. Appl. Phys., 2010, vol. 107, p. 123712. DOI: 10.1063/1.3432736
32. Kurganskii S. I., Pereslavtseva N. S. Physics of the Solid State, 2002, vol. 44, no. 4, pp. 704–708. DOI: 10.1134/1.1470562
33. Kurganskii S. I., Pereslavtseva N. S. Physics of the Solid State, 2000, vol. 42, no. 8, pp. 1542–1547. DOI: 10.1134/1.1307068
34. Pereslavtseva N. S., Kurganskii S. I. Physics of the Solid State, 1999, vol. 41, no. 11, pp. 1906–1910. DOI: 10.1134/1.1131124
35. Kurganskii S. I., Pereslavtseva N. S. Physica Status Solidi (b), 2000, vol. 218, no. 2, pp. 431–439. DOI: 10.1002/1521-3951(200004)218:2<431::AID-PSSB431>3.0.CO;2-5
36. Kurganskii S. I., Pereslavtseva N. S., Levitskaya E. V., Yurakov Yu. A., Rudneva I. G., Domashevskaya E. P. Journal of Physics: Condensed Matter, 2002, vol. 14, no. 27, pp. 6833–6839. DOI: 10.1088/0953-8984/14/27/307
37. Kurganskii S. I., Pereslavtseva N. S., Levitskaya E. V., Yurakov Yu. A. Physica Status Solidi (b), 2002, vol. 233, no. 2, pp. 306–311. DOI: 10.1002/1521-3951(200209)233:2<306::AID-PSSB306>3.0.CO;2-U
38. Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865-3868. DOI: 10.1103/PhysRevLett.77.3865
39. Pauling L., Hendricks S. B. Journal of The American Chemical Society, 1925, vol. 47, no. 3, pp. 781-790. DOI: 10.1021/ja01680a027
40. Droubay, T., Rosso, K. M., Heald, S. M., Mccready D. E., Wang, C. M., Chambers S. A. Physical Review B, 2007, vol. 75, no. 10, p. 104412. DOI: 10.1103/PhysRevB.75.104412
41. Li S., Morasch, J., Klein A., Chirila C., Pintilie L., Jia L., Albe K. Physical Review B, 2013, vol. 88, no. 4, p. 045428. DOI: 10.1103/PhysRevB.88.045428
How to Cite
Sukmanova, M. A., & Kurganskii, S. I. (2018). COMPUTER SIMULATION OF THE ELECTRONIC STRUCTURE OF HEMATITE. Condensed Matter and Interphases, 20(1), 115-124.