X-RAY LUMINESCENT COMPOSITES BASED ON POLYCRYSTALLINE DIAMOND WITH INTEGRATED NaGdF4:Eu NANOPARTICLES FOR PHOTONICS

  • Sergey V. Kuznetsov Cand. Sci. (Chem.), Senior Researcher, Prokhorov General Physics Institute, RAS, Moscow, Russia; tel.: +7 (499) 5038721, e-mail: kouznetzovsv@gmail.com
  • Vadim S. Sedov Cand. Sci. (Phys.-Math.), Researcher, Prokhorov General Physics Institute, RAS, Moscow, Russia; tel.: +7 (499) 503 87-81, e-mail: sedovvadim@yandex.ru
  • Artem K. Martyanov the postgraduate, Prokhorov General Physics Institute, Moscow, Russia, RAS; tel.: +7 (499) 503 87-81, e-mail: art.martyanov@gmail.com
  • Vera Yu. Proydakova Researcher, Prokhorov General Physics Institute, RAS, Moscow, Russia; tel.: +7 (499) 5038721, e-mail: vera.proydakova@gmail.com
  • Viktor G. Ralchenko Cand. Sci. (Phys.-Math.), Laboratory Head, Prokhorov General Physics Institute, RAS, Moscow, Russia; tel.: +7(499) 5038229, e-mail: vg_ralchenko@mail.ru
  • Sergey Kh. Batygov Leading Researcher, Prokhorov General Physics Institute, RAS, Moscow, Russia; tel.: +7(499) 5038393, e-mail: sbat@lst.gpi.ru
  • Valeriy V. Voronov Cand. Sci. (Phys.-Math.), Laboratory Head, Prokhorov General Physics Institute, RAS, Moscow, Russia; tel.: +7 (499) 5038377, e-mail: voronov@lst.gpi.ru
  • Alexey D. Yapryntsev the postgraduate, Kurnakov Institute of General and Inorganic Chemistry, RAS, Moscow, Russia; tel.: +7 (495) 6338534, e-mail: yaprynsev@yandex.ru
  • Vladimir K. Ivanov Dr. Sci. (Chem.), Full Professor, Director of the Kurnakov Institute of General and Inorganic Chemistry, RAS, Moscow, Russia; tel.: +7 (495) 9520224, e-mail: van10@mail.ru
  • Pavel P. Fedorov Dr. Sci. (Chem.), Full Professor, Laboratory Head, Prokhorov General Physics Institute, RAS, Moscow, Russia; tel.: +7 (499) 5038292, e-mail: ppfedorov@yandex.ru
Keywords: sodium-gadolinium fluoride, polycrystalline diamond, X-ray luminescent composites.

Abstract

The luminescent diamond composite with high-intensity narrow-band X-ray luminescence at a wavelength of 612 nm with 6.2 nm width at half-height was developed. In the luminescence spectra of composites, compared with the initial powders, there are no transitions with 5D1 and 5D0 -7F4 transitions. The ratio of line intensities between the 5D0-7F1 and 5D0-7F2 transitions has changed. In the composite, the intensity of the induced electric dipole transition of 5D0-7F2 with respect to the intensity of the magnetic dipole transition of 5D0-7F1 was much larger than in the initial powder. This was indicated about a decrease in the local symmetry of the Eu3+ ions environment in the composite. The positions and intensities of individual lines in the 5D0-7F2 transition had changed markedly in the composite, in particular, the most intense line of this transition has shifted from 616 to 612 nm. This was indicated as a change in the structure of NaGdF4: Eu upon composite production. X-ray luminescence spectra of a composite with different amounts of dispersed droplets were showed that the sample with 3 droplets of dispersion with a total concentration of applied particles of 96 mg/ml was exhibited the most intense luminescence. A sample with a 65 mg/ml total concentration (1 drop of dispersion) slightly exceeds the intensity of the sample with a total concentration of 64 mg/ml (2 drops of dispersion). The lowest intensity was recorded for a sample with a 32 mg/ml total concentration (1 drop of dispersion). The concentration dependence of the intensity of X-ray luminescence from the number of dispersed particles was noted. The use of β-NaGdF4: Eu nanopowders instead of europium oxide and europium fluoride made it possible to obtain high-intensity luminescence with a higher aspect ratio of signal-to-noise ratio than previously published by various authors. The possibility of using a fluorescent diamond-fluoride composite as a X-ray luminescent screen has been shown for the first time.

 

 

ACKNOWLEDGEMENTS

The work was supported by grant Russian Foundation for Basic Research No. 16-29-11784-ofi.

The results were obtained using the equipment of the Collective Use Centers of the Prokhorov General Physics Institute of the Russian Academy of Sciences and Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences.

 

Downloads

Download data is not yet available.

References

1. Golmohammadi H., Morales-Narváez E., Naghdi T., Merkoçi A. Chem. Mater., 2017, vol. 29, pp. 5426–5446. DOI: 10.1021/acs.chemmater.7b01170
2. Fedorov P. P., Luginina A. A., Kuznetsov S. V., Voronov V. V., Lyapin A. A., Ryabochkina P. A., Chernov M. V., Mayakova M. N., Pominova D. V., Uvarov O. V., Baranchikov A. E., Ivanov V. K., Pynenkov A. A., Nishchev K. N. J. Fluor. Chem., 2017, vol. 202, pp. 9-18. DOI: 10.1016/j.jfluchem.2017.08.012
3. Miao M., Zhao J., Feng X., Cao Y., Cao S., Zhao Y., Ge X., Sun L., Shi L., Fang J. J. Mater. Chem., 2015, vol. C 3, pp. 2511-2517. DOI: 10.1039/c4tc02622e
4. Magyar A., Hu W., Shanley T., et al. Nature Comm., 2014, vol. 5, Article number: 3523, DOI: 10.1038/ncomms4523
5. Sedov V. S., Kuznetsov S. V., Ralchenko V. G., Mayakova M. N., Krivobok V. S., Savin S. S., Martyanov A. K., Romanishkin I. D., Khomich A. A., Fedorov P. P., Konov V. I. Diam. Relat. Mater., 2017, vol. 72, pp. 47-52. DOI: 10.1016/j.diamond.2016.12.022
6. Bokarev A. N., Plastun I. L. Nanosystems: Phys., Chem., Math., 2018, vol. 9 (3), pp. 370–377. DOI: 10.17586/2220-8054-2018-9-3-370-377
7. Kudo T., Takahashi S., Nariyama N., Hirono T., Tachibana T., Kitamura H. Rev. Sci. Instrum., 2006, vol. 77, pp. 123105. DOI: 10.1063/1.2403843
8. Degenhardt M., Aprigliano G., Schulte-Schrepping H., Hahn U., Grabosch H.-J., Wörner E. J. Phys.: Conf. Ser., 2013, vol. 425, pp. 192022. DOI: 10.1088/1742-6596/425/19/192022
9. Schirhagl R., Chang K., Loretz M., Degen C. L. Ann. Rev. Phys. Chem., 2014, vol. 65, pp. 83–105. DOI: 10.1146/annurev-physchem-040513-103659
10. Bolshakov A., Ralchenko V., Sedov V., et al. Phys. Status Solidi (a), 2015, vol. 212.11, pp. 2525-2532. DOI: 10.1002/pssa.201532174
11. Ralchenko V. G., Sedov V. S., Khomich A. A., Krivobok V. S., Nikolaev S. N., Savin S. S., Vlasov I. I., Konov V. I. Bull. Lebedev Phys. Inst., 2015, vol. 42, pp. 165–168. DOI: 10.3103/s1068335615060020
12. Ekimov E. A., Lyapin S. G., Boldyrev K. N., Kondrin M. V., Khmelnitskiy R., Gavva V. A., Kotereva T. V., Popova M. N. JETP Lett., 2015, vol. 102, pp. 701–706. DOI: 10.1134/s0021364015230034
13. Aharonovich I., Castelletto S., Johnson B. C., McCallum J. C., Simpson D. A., Greentree A. D., Prawer S. Phys. Rev., 2010, vol. B 81, pp. 121201. DOI: 10.1103/physreva.81.043813
14. Noculak A., Podhorodecki A. Nanotechnology, 2017, vol. 28, pp. 175706. DOI: 10.1088/1361-6528/aa6522
15. Palo E., Tuomisto M., Hyppänen I., Swart H. C., Hölsä J., Soukka T., Lastusaari M. J. Lumin., 2017, vol. 185, pp.125-131. DOI: 10.1016/j.jlumin.2016.12.051
16. Yasyrkina D. S., Kuznetsov S. V., Fedorov P. P., Voronov V. V., Ermakov R. P., Ryabova A. V., Pominova D. V., Baranchikov A. E., Ivanov V. K., Osiko V. V. J. Fluor. Chem., 2014, vol. 158, pp. 60-64. DOI: 10.1016/j.jfluchem.2013.11.009
17. Zhao J., Jin D., Schartner E. P., et al. Nature Nanotech., 2013, vol. 8, pp. 729-734. DOI: 10.1038/nnano.2013.171
18. Shannon R. D. Acta Crystallogr. A., 1976, vol. 32(5), pp. 751-767. DOI: 10.1107/s0567739476001551
19. Sedov V., Ralchenko V., Khomich A.A., Vlasov I., Vul A., Savin S., Goryachev A., Konov V. Diam. Relat. Mater., 2015, vol. 56, pp. 23–28. DOI: 10.1107/s0567739476001551
20. Dieke G. H., Crosswhite H. M. Appl. Opt., 1963, vol. 2, pp. 675-686. DOI: 10.1364/ao.2.000675
Published
2018-09-12
How to Cite
Kuznetsov, S. V., Sedov, V. S., Martyanov, A. K., Proydakova, V. Y., Ralchenko, V. G., Batygov, S. K., Voronov, V. V., Yapryntsev, A. D., Ivanov, V. K., & Fedorov, P. P. (2018). X-RAY LUMINESCENT COMPOSITES BASED ON POLYCRYSTALLINE DIAMOND WITH INTEGRATED NaGdF4:Eu NANOPARTICLES FOR PHOTONICS. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 20(3), 424-431. https://doi.org/10.17308/kcmf.2018.20/579
Section
Статьи