The structure and properties of nanoporous anodic oxide films on titanium aluminide

  • Kristina V. Stepanova Petrozavodsk State University 33, Lenin ave., 185910 Petrozavodsk, Republic of Karelia, Russian Federation
  • Natalia M. Yakovleva Petrozavodsk State University 33, Lenin ave., 185910 Petrozavodsk, Republic of Karelia, Russian Federation
  • Alexander N. Kokatev Petrozavodsk State University 33, Lenin ave., 185910 Petrozavodsk, Republic of Karelia, Russian Federation
  • Håkan Pettersson Halmstad University SE-302-50 Halmstad, Sweden
Keywords: anodizing,, nanoporous,, oxide films,, powder alloy,, titanium aluminide,, heterogeneous,, photocatalytic activity

Abstract

  Purpose. The paper presents a structural analysis of nanoporous oxide films formed by anodizing γTiAl (Тi-40 wt. %Al) samples in fluoride containing water and waterless electrolytes.

Methods and methodology. Two groups of samples produced from (1) ingots and (2) sintered powder were used for anodizing. X-ray diffraction, X-ray electron spectroscopy, and scanning electron microscopy were used to analyse the structure of the films. The band gap values of anodized powder samples were estimated based on their UV-vis absorption spectra. The reaction of degradation of methyl orange under UV-vis irradiation was used to examine the photocatalytic activity of anodized TiAl powder.

Results. Anodizing performed under optimal conditions in a 10 % H2SO4+0.15 % HF water electrolyte for both groups of samples results in the formation of self-organized nanoporous films of about 350 nm thickness with effective pore diameter <dp>= (70±10) nm. All the studied oxide films are heterogeneous, consist mostly of TiO2 : Al2O3 in a ratio of approximately 1:1, and have an X-ray amorphous structure. The optical band gap value of anodized powders determined by their UV absorption was Eg~2.5 eV. It is much less than Eg of nanotubular titanium dioxide (Eg~3.4 eV). The study also found that the concentration of methyl orange decreases under visible light irradiation in the presence of anodized TiAl powder.

Conclusion. Photocatalytic activity of the developed heterogeneous films might be initiated by the visible light irradiation (λ~480-510 nm). In other words, the new composite “TiAl powder/TiO2-Al2O3 nanoporous oxide” exhibits activity under the visible light radiation which results in the photocatalytic degradation of methyl orange. The obtained results can be successfully used for the production of new powder nanomaterials which show photocatalytic activity under visible light irradiation.

CONFLICT OF INTEREST

The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

 

 

REFERENCES

  1. Wang Y., Ma X., Li H., Yin S., Sato T. Advanced Catalytic materials - Photocatalysis and Other Current Trends, 2016, vol. 12, pp. 337–357. https://doi.org/10.5772/61864
  2. Hashimoto K., Irie H., Fujishima A. Japanese Journal of Applied Physics, 2005, vol. 44, no. 12, pp. 8269–8285. https://doi.org/10.1143/jjap.44.8269
  3. Uddin Md.T., Engg M. Sc. Dr. Rer. Nat. Technical University of Darmstadt, 2014, 222 p. URL: https://d-nb.info/1061050335/04 (accessed 28.11.2018)
  4. Batzill M. Energy Environ. Sci., 2011, vol. 4, pp. 3275–3286. https://doi.org/10.1039/c1ee01577j
  5. Marschall R. Funct. Mater., 2014. vol. 24. pp. 2421–2440. https://doi.org/10.1002/adfm.201303214
  6. Ghicov A., Schmuki P. Commun., 2009, pp. 2791–2808. https://doi.org/10.1039/b822726h
  7. Li F., Zhao Y., Hao Y., Wang X., Liu R., Zhao D., Chen D. Journal of Hazardous Materials, 2012, vol. 239–240. pp. 118–127. https://doi.org/10.1016/j.jhazmat.2012.08.016
  8. Morris S. M., Horton J. A., Jaroniec M. Mesopor. Mater., 2010, vol. 128, pp. 180–186. https://doi.org/10.1016/j.micromeso.2009.08.018
  9. Ahmed M. A., Abdel-Messih M. F. Journal of Alloys and Compounds, 2011, vol. 509, pp. 2154–2159. https://doi.org/10.1016/j.jallcom.2010.10.172
  10. Pakmehr M., Nourmohammadi A., Ghashang M., Saffar-Teluri A. Journal of Particle Science and Technology, 2015, pp. 31–38. https://doi.org/22104/JPST.2015.76
  11. Pei J., Ma W., Li R., Li Y., Du H. Journal of Chemistry, 2015, pp. 1–7. https://doi.org/10.1155/2015/806568
  12. Il'in, A. A., Kolachev, B. A., Pol'kin, I. S. Titanovye splavy. sostav, struktura, svoistva [Titanium alloys. Composition, structure, properties]. Moscow, VILS-MATI Publ., 2009, 520 p. (in Russ.)
  13. Tsuchiya, H., Berger, S., Macak, J.M., Ghicov, A., Schmuki, P. Comm., 2007, vol. 9, pp. 2397–2402. https://doi.org/10.1016/j.elecom.2007.07.013
  14. Berger, S., Tsuchiya, H., Schmuki, P. Mater., 2008, vol. 20, pp. 3245–3247. https://doi.org/10.1021/cm8004024
  15. Stepanova K. V., Yakovleva N. M., Kokatev A. N., Pettersson Kh. zap. PetrGU. Seriya Estestvennye i tekhnicheskie nauki, 2015, vol. 147, no. 2, pp. 81–86. (in Russ.)
  16. Stepanova К. V., Yakovleva N. M., Kokatev А. N., Pettersson H. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2016, vol. 10, no. 5, pp. 933– https://doi.org/10.1134/S102745101605013X
  17. Stepanova K. V. Diss. kand. tekh. nauk. Petrozavodsk, 2016, 162 p. (in Russ.)
  18. Yakovleva N. M., Kokatev A. N., Chupakhina E. A., Stepanova K. V., Yakovlev A. N., Vasil'ev S. G., Shul'ga A. M. Condensed Matter and Interphases, 2016, vol. 18, no. 1, pp. 6− URL: http://www.kcmf.vsu.ru/resources/t_18_1_2016_001.pdf (in Russ.)
  19. Kokatev A. N. Diss. kand. tekh. nauk. Petrozavodsk, 2013, 170 p.
  20. Savchenko O. I., Yakovleva N. M., Yakovlev A. N., Kokatev A. N., Pettersson Kh. Condensed Matter and Interphases, 2012, vol. 14, no. 2, pp. 243–249. URL: http://www.kcmf.vsu.ru/resources/t_14_2_2012_018.pdf (in Russ.)
  21. Canulescu S., Rechendorff K., Borca C.N., Jones N.C., Bordo K., Schou J., Pleth Nielsen L., Hoffmann S. V., Ambat R. Applied Physics Letters, 2014, vol. 104, pp. 121910(1–4). https://doi.org/10.1063/1.4866901
  22. Chen C., Liu J., Liu P., Yu B. Advances in Chemical Engineering and Science, 2011, vol. 1, pp. 9– https://doi.org/10.4236/aces.2011.11002
  23. Rashed M. N., El-Amin A. A. International Journal of Physical Sciences, 2007, vol. 2 (3), pp. 073–081. URL: http://www.academicjournals.org/IJPS (accessed 28.11.2018)
  24. Ivanov V. M., Tsepkov M. G., Figurovskaya V. N. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya [Moscow University Chemistry Bulletin], 2010, vol. 65, 6, pp. 370-373. https://link.springer.com/article/10.3103%2FS0027131410060076
  25. Scuderi V., Impellizzeri G., Romano L., Scuderi M., Nicotra G., Bergum K., Irrera A., Svensson B.G., Privitera V. Nanoscale Research Letters, 2014, vol. 9, pp. 458–464. https://doi.org/10.1186/1556-276x-9-458 
  26. AbdElmoula M. Dr. Philosophy. Boston, 2011, 275 р.
  27. Lee K., Mazare A., Schmuki P. Rev., 2014, vol. 114, pp. 9385–9454. https://doi.org/10.1021/cr500061m
  28. Leyens C., Peters M. Titanium and Titanium Alloys. Fundamentals and Applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003, 532 p.

Downloads

Download data is not yet available.
Published
2019-03-06
How to Cite
Stepanova, K. V., Yakovleva, N. M., Kokatev, A. N., & Pettersson, H. (2019). The structure and properties of nanoporous anodic oxide films on titanium aluminide. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 21(1), 135-145. https://doi.org/10.17308/kcmf.2019.21/724
Section
Статьи