The SnAs–P polythermic section of Sn–As–P ternary system

  • Tatiana P. Sushkova Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Aleksandra V. Sheveljuhina Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Galina V. Semenova Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
  • Elena Yu. Proskurina Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation
Keywords: Sn–As–P system,, phase equilibria,, solid solutions


Objective. In recent years, tin phosphides and arsenides have been actively studied as very promising materials for the manufacture of anodes of Li (Na, K)-ionic batteries. The formation of solid solutions based on these compounds with the mutual replacement of phosphorus and arsenic atoms takes place quite easily. The use of solid solutions instead of pure compounds allows one to expand the range of useful properties of the material. This determines the relevance of the study of phase relationships in the Sn–As–P ternary system. The purpose of this paper is to study the SnAs–P polythermal cross section by the methods of X-ray phase analysis (XRD) and differential thermal analysis (DTA).

Methods and Methodology. The samples were obtained in the concentration range of 0.05-0.60 mol.f. phosphorus by fusing simple substances of tin, arsenic and red phosphorus in evacuated quartz ampoules. Then the alloys were annealed at a temperature T = 773 K for 150 hours. The study of the samples was carried out on the differential thermal analysis (DTA) setup with a programmable heating of the furnace. In our experiments, the heating rate of DTA-setup was 5 K·min–1. Thermoanalytical studies were carried out using Stepanov’s quartz vessels. X-ray powder diffraction (XRD) analysis of samples of the SnAs–P section were performed using a powder diffractometer ARL X’TRA with the following characteristics: CuKa-radiation, exposure step 0.06o, exposure time 3.0 seconds.

Results. X-ray phase analysis showed that all the alloys represent the mixture of three phases: solid solution based on SnAs (b), solid solution based on SnP3 (g) and solid solution of tin in the intermediate phase As1–хPх (d). The extent of the b-solid solution along the SnAs–Р section is less than 0.05 mol.f. On thermograms of samples with phosphorus concentration 0.20-0.60 mol. the same temperature of onset of the fi rst endothermic effect was observed (827±2 K).

Conclusions. Based on the DTA data, taking into account the XRD-results and the theoretical analysis of phase equilibria in the Sn–As–P system, T-x diagram of the SnAs–Р polythermal section was constructed. The presence of a horizontal line at a T-x diagram at a temperature of 827 ± 2 K corresponds to the the existence of the invariant peritectic equilibrium L+ (d) ↔ b + g in the Sn–As–P system.




  1. Zhang W., Mao J., Li S., Chen Z., Guo Z. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode // Am. Chem. Soc., 2017, v. 139(9), pp. 3316–3319.
  2. Liu S., Zhang H., Xu L., Ma L., Chen X. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries // of Power Sources, 2016, v. 304, pp. 346–353.
  3. Zhang W., Pang W., Sencadas V., Guo Z. Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries // Joule, 2018, v. 2(8), pp. 1534–1547.
  4. Lan D., Wang W., Shi L., Huang Y., Hu L., Li Q. Phase pure Sn4P3 nanotops by solution-liquid-solid growth for anode application in sodium ion batteries // Mater. Chem. A, 2017, v. 5, pp. 5791–5796.
  5. Mogensen R., Maibach J., Naylor A. J., Younesi R. Capacity fading mechanism of tin phosphide anodes in sodium-ion batteries // Dalton Trans., 2018, v. 47, pp. 10752–10758.
  6. Kamali A. R., Fray D. J. Tin-based materials as advanced anode materials for lithium ion batteries: a review // Adv. Mater. Sci., 2011, v. 27, pp. 14–24. URL:
  7. Kovnir K. A., Kolen’ko Y. V., Baranov A. I., Neira I. S., Sobolev A. V., Yoshimura M., Presniakov I. A., Shevelkov A. V. Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure // Journal of Solid State Chemistry, 2009, v. 182(5), pp. 630–639.
  8. Semenova G. V., Kononova E. Yu., Sushkova T. P. Polythermal section Sn4P3 – Sn4As3 // Russian J. of Inorganic Chemistry, 2013, v. 58 (9), pp. 1242–1245.
  9. Sushkova T. P, Semenova G. V., Naumov A. V., Proskurina E. Yu. Solid solutions in the system Sn-As-P // Bulletin of VSU. Series: Chemistry. Biology. Pharmacy, 2017, v. 3, pp. 30–36. URL: http://www.
  10. Semenova G. V., Sushkova T. P, Tarasova L. A., Proskurina E. Yu. Phase equilibria in a Sn-As-P system with a tin concentration less than 50 mol. % // Condensed Matter and Interphases, 2017, v. 19(3), pp. 408–416.
  11. Semenova G. V., Sushkova T. P., Zinchenko E. N., Yakunin S. V. Solubility of phosphorus in tin monoarsenide // Condensed Matter and Interphases, 2018, v. 20(4), pp. 644-649.
  12. Semenova G. V., Goncharov E. G. Solid Solutions Involving Elements of the Fifth Group. – Мoscow, MFTI Publ., 2000, 160 p. (in Russ.)
  13. Okamoto H. Phase diagrams for binary alloys, Second Edition. Materials Park, OH.: ASM International, 2010, 810 р. URL: https://www.asminternational. org/...pdf/c36eeb4e-d6ec-4804-b319-e5b0600ea65d
  14. Shirotani , Shiba S., Takemura K., Shimomura О., Yagi Т. Pressure-induced phase transitions of phosphorus-arsenic alloys // Physica B: Condensed Matter, 1993, v. 190, pp. 169–176.
  15. Arita M., Kamo K. Measurement of vapor pressure of phosphorus over Sn-P alloys by dew point method // Jpn. Inst. Met., 1985, v. 26(4), pp. 242–250.
  16. Zavrazhnov A. Yu., Semenova G. V., Proskurina E. Yu., Sushkova T. P. Phase diagram of the Sn–P system // Thermal Analysis and Calorimetry, 2018, v. 134(1), pp. 475–481.
  17. Gokcen N. A. The As-Sn (Arsenic-Tin) system // Bulletin of alloy phase diagrams, 1990, v. 11(3), pp. 271–278.


Download data is not yet available.

Author Biographies

Tatiana P. Sushkova, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Sushkova Tatiana P. – Cand.Sci. (Chem.),  Associate Professor, Department of General and Inorganic Chemistry, Voronezh State University, Voronezh, Russian Federation; e-mail:                                       ORCID iD 0000-0003-1969-7082

Aleksandra V. Sheveljuhina, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Sheveljuhina Aleksandra V. – 5rd Student at Faculty of Chemistry, Department of General and Inorganic Chemistry, Voronezh State University, Voronezh, Russian Federation; ORCID iD 0000-0002-0146-315X

Galina V. Semenova, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Semenova Galina V. – Dr.Sci. (Chem.), Professor, Department of General and Inorganic Chemistry,
Voronezh State University, Voronezh, Russian Federation; e-mail:
ORCID iD 0000-0003-3877-985X

Elena Yu. Proskurina, Voronezh State University 1, Universitetskaya pl., 394018 Voronezh, Russian Federation

Proskurina Elena Yu. – Cand.Sci. (Chem.), Assistant Lecturer, Department of General and Inorganic
Chemistry, Voronezh State University, Voronezh, Russian Federation; e-mail:
ORCID iD 0000-0002-6149-1398

How to Cite
Sushkova, T. P., Sheveljuhina, A. V., Semenova, G. V., & Proskurina, E. Y. (2019). The SnAs–P polythermic section of Sn–As–P ternary system. Condensed Matter and Interphases, 21(2), 287-295.

Most read articles by the same author(s)