Atomic composition, microstructure, and electromagnetic properties of schungite micropowder
Abstract
The goal of the work was to study the microstructural, elemental, and electromagnetic properties of the samples of micropowder made from a natural mineral schungite. It was found that according to an X-ray spectral microanalysis, the carbon content in the studied samples of the mineral schungite was from 44 to 54 wt% while the iron content did not exceed 3.9 wt%. The iron content increased up to 6.1 wt% in the produced schungite micropowder.
It can be presumed that in the schungite, micropowder iron exists in the form of ferrimagnetic nanoparticles of magnetite and pyrite, which is formed when grinding schungite particles in ball mills with a steel body and a milling bowl. The produced schungite micropowder also showed the presence of weak ferrimagnetic properties according to the measurements of magnetic permeability performed by vector analysis of the impedance of electrical circuits.
In accordance with its electromagnetic characteristics, schungite micropowder made from shungite mineral is an effective radio-absorbing filler for building materials for cellular communication frequency bands
Downloads
References
Zavertkin A. S., Shchiptsov V. V. Technology for obtaining refractory and molding materials based on shungite rocks. Scientific foundations of chemistry and technology for processing complex raw materials and synthesizing functional materials based on it*. 2008; 2. Available at: https://helion-ltd.ru/shungite-rocksstudy/(In Russ.)
Zavertkin A. S., Tyaganova V. I., Tupolev A. G. Application of chemicals and technological materials in pretreatment of shungite rock. In: Problems in the rational use of natural and technogenic raw materials from the Barents region in the construction and technical material technology. Proceedings of Second International Conference 12–16 September, 2005. p. 71–73. (In Russ., abstract in Eng.). Available at: http://resources.krc.karelia.ru/krc/doc/publ/problem_region_ispol/problem_region_ispol.pdf
Sadovnichy R. V., Rozhkova N. N., Gorbunova E. V., Chertov A. N. The Maksovskaya reserve (the Zazhoginskoye deposit) schungite rock photometric sorting possibilities study. Obogashchenie Rud. 2016;1: 10–15. (In Russ., abstract in Eng.). https://doi.org/10.17580/or.2016.01.02
Reznikov V. A., Polekhovskii Yu. S. Amorphous shungite carbon: A natural medium for the formation of fullerenes. Technical Physics Letters. 2000;26: 689–693. https://doi.org/10.1134/1.1307814
Golubev Y. A., Antonets I. V., Shcheglov V. I. Static and dynamic conductivity of nanostructured carbonaceous shungite geomaterials. Materials Chemistry and Physics. 2019;226: 195–203. https://doi.org/10.1016/j.matchemphys.2019.01.033
Antonets I. V., Golubev Y. A., Shcheglov V. I.,Sun S. Electromagnetic shielding effectiveness of lightweight and flexible ultrathin shungite plates. Current Applied Physics. 2021;29: 97–106. https://doi.org/10.1016/j.cap.2021.06.008
Golubev Е. V., Antonets I. V. Influence of mineralogical and petrographic features on microwave radiation reflection from shungite rocks in the range of 26–39 GHz. Vestnik IG Komi SC UB RAS. 2017;5: 43–48. (In Russ., abstract in Eng.). https://doi.org/10.19110/2221-1381-2017-5-43-48
Fujita T., Aoki T., Ponou,J., Dodbiba G., He C., Wang K., Ning S., Chen H., Wei Y. Removal of impurities from shungite via a combination of physical and chemical treatments. Minerals. 2021;11(3): 245. https://doi.org/10.3390/min11030245
Anufrieva S. I., Ozhogina Е. G. Characteristics of the mineralogical and analytical study of natural types of hungite rocks. In: The Significance of Technological Mineralogy Research in Solving the Problems of Integrated Development of Mineral Raw Materials. Petrazavodsk: KarRC RAS. 2007. p. 135–145. (In Russ.). Available at: http://resources.krc.karelia.ru/krc/doc/publ2008/mineralogia_135-145.pdf
Rafienko V. A. On the mechanism of leaching of sulfides from shungite rocks*. Mining Informational and Analytical Bulletin (Scientific and Technical Journal). 2007;9: 38–48. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=9596187
Rafienko V. A., Yushin T. I. Development of technology for the processing of shungite rocks with the production of high quality dispersed shungite concentrates*. Mining Informational and Analytical Bulletin (Scientific and Technical Journal). 2013;10: 102–110. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=20434286
Emelyanov S., Kuzmenko A., Rodionov V., Dobromyslov M. Mechanisms of microwave absorption in carbon compounds from shungite. Journal of Nanoand Electronic Physics. 2013;5(4): 40233. Режим доступа: https://www.elibrary.ru/item.asp?id=44952915
Lyn’kov L. M., Borbot’ko T. V., Krishtopova E. A. Radio-absorbing properties of nickel-containing schungite powder. Technical Physics Letters. 2009;35: 410–411. https://doi.org/10.1134/S1063785009050071
Pukhir G. A., Makhmud M. Sh., Nasonova N. V., Lynkov L. M. Protective properties of screens of electromagnetic radiation of a microwave range on the basis of the combined, dielectric and magnetic powder components. Doklady BGUIR. 2011;6(60): 94–97. (In Russ., abstract in Eng.). Available at: https://libeldoc.bsuir.by/bitstream/123456789/2005/1/Pukhir_Zashchitnyye.PDF
Lynkov L. M., Makhmud M. Sh., Krishtopova E. A. Screens of electromagnetic radiation based on powdered shungite. Vestnik of Polotsk State University. Part C. Fundamental Sciences. 2012;4: 103–108. (InRuss., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=23480159
Krishtopova E. A., Makhmud M. Sh., Lynkov L. M. Electromagnetic absorbers based on blends of powdered fillers. Doklady BGUIR. 2012;1(63): 17–21. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=29778573
Mukhametrahimov R. Kh., Shafigullin R. I., Kupriyanov V. N. Development of radioprotective shungite-ontaining gypsum-fiber facing sheets. News of the KSUAE. 2017;3(41): 224–231. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=30040186
Galautdinov A., Mukhametrakhimov R., Kupriyanov V. Gypsum-fiber radioprotective facing materials. Lecture Notes in Civil Engineering. 2021; 372–381. https://doi.org/10.1007/978-3-030-80103-8_40
Abdimuratov Zh. S., Manbetova Zh. D., Imankul M. N., Chezhimbayeva K. S., Davronbekov D. A. Absorbers of electromagnetic radiation based on shungite species. Series of Geology and Technical Sciences. 2021; 445(1):6–12.https://doi.org/10.32014/2021.2518-170x.1
Mosin O. V, Ignatov I. Application of natural fullerene containing mineral shungite in construction industry and building technologies. Nanobuild. 2012; 6: 81–93. (In Russ., abstract in Eng.). Available at: https://www.elibrary.ru/item.asp?id=18268370
Podolsky V. P., Volkov V. V., Kukina O. B., Andreev A. V. Substantiation of the possibility of using shungite as an effective radio-absorbing material. Russian Journal of Building Construction and Architecture. 2022;1(65): 69–75. (In Russ., abstract in Eng.). https://doi.org/10.36622/VSTU.2022.65.1.006
Lukutsova N. P., Pykin A. A., Karpikov E. G. Peculiarities of structure formation of cement stone with carbon-silica nanodispersed additive*. Stroitel’nye Materialy (Construction Materials). 2011;9: 66–67. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=17247606
Belousova E. S., Makhmud M. M., Lynkov L. M., Nasonova N. V. Radio shielding properties of concretes based on shungite nanomaterials. Nanobuild. 2013;5(2): 56–67. (In Russ., abstract in Eng.). Available at: http://www.nanobuild.ru/en_EN/journal/Nanobuild-2-2013/56-67.pdf
Egerton R. F. Physical principles of electron microscopy. Springer Science+Business Media, Inc.; 2005. 211 p.
Reed S. J. B. Electron microprobe analysis and scanning electron microscopy in geology. New York: Published in the United States of America by Cambridge University Press; 2005 216 p.
Vlasov A. I., Elsukov K. A., Kosolapov I. A. Electron microscopy: textbook.* Moscow: Publishing House of MSTU im. N. E. Bauman; 2011. 168 p. (In Russ.)
Igarashi S., Kawamura M., Watanabe A. Analysis of cement pastes and mortars by a combination of backscatter-based SEM image analysis and calculations based on the Powers model. Cement and Concrete Composites. 2004;26(8): 977–985. https://doi.org/10.1016/j.cemconcomp.2004.02.031
Hu C., Ma H. Statistical analysis of backscattered electron image of hydrated cement paste. Advances in Cement Research. 2016;28(7): 469–474. https://doi.org/10.1680/jadcr.16.00002
Mashuri X., Lestari W., Triwikantoro X., Darminto X. Preparation and microwave absorbing properties in the X-band of natural ferrites from iron sands by high energy milling. Materials Research Express. 2018; 5(1):014003.https://doi.org/10.1088/2053-1591/aa68b4
Guan B., Ding D., Wang L., Wu J., Xiong R. The electromagnetic wave absorbing properties of cement-based composites using natural magnetite powders as absorber. Materials Research Express. 2017;4(5): 056103. https://doi.org/10.1088/2053-1591/aa7025
Wu X., Xie X., Cao Y. Self-magnetization of pyrite and its application in flotation. Transactions of Nonferrous Metals Society of China. 2016;26(12): 3238–3244. https://doi.org/10.1016/s1003-6326(16)64456-4
Waters K. E., Rowson N. A., Greenwood R. W., Williams A. J. The effect of heat treatment on the magnetic properties of pyrite. Minerals Engineering. 2008;21(9): 679-682. https://doi.org/10.1016/j.mineng.2008.01.008
Yuping D., Hongtao G. Microwave absorbing materials. Singapore: Pan Stanford Publishing Pte. Ltd.; 2017. 387 p.
Liu L, Duan Y, Guo J. Influence of particle size on the electromagnetic and microwave absorption properties of FeSi/paraffin composites. Physica B. 2011;406(11): 2261–2265. https://doi.org/10.1016/j.physb.2011.03.045
Dosoudil R., Ušák E., Olah V. Computer controlled system for complex permeability measurement in the frequency range of 5 Hz – 1 GHz. Journal of Electrical Engineering. 2006;57(8/S): 105–109.
Dosoudil R., Ušák E., Olah V. Automated measurement of complex permeability and permittivity at high frequencies. Journal of Electrical Engineering. 2010;61(7/S): 111–114.
Dosoudil R. Determination of permeability from impedance measurement using vector network analyzer. Journal of Electrical Engineering. 2012;63(7s): 97–101.
Buz’ko V., Shamray I., Goryachko A., Udodov S., Abashin A. Electromagnetic characteristics of biosilicа from rice husk. E3S Web of Conferences. 2021;263: 01013. https://doi.org/10.1051/e3sconf/202126301013
Buzko V. Yu., Udodov S. A., Litvinov A. E., Ivanin S. N., Goryachko A. I., Charikov G. Yu. Properties of radio-absorbing composites concrete-micropowders of the brass. Scientific works of the Kuban State Technological University. 2021;5: 25–33. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=47874005
Lisovskiy D. N., Mahmud М. S., Vlasova G. A., Pulko T. A. Absorbents of electromagnetic radiation based on the
fire-proof paints with powder-like filler. Doklady BGUIR. 2012;4: 89–93. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=29425911
Belousova E. S., Lynkou L. M., Senyut V. T., Krishtopova E. A. Influence of heat treatment in vacuum on shungite shielding properties. Doklady BGUIR. 2014;8: 31–35. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/item.asp?id=29674388
Copyright (c) 2023 Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.