Mechanical Properties of Li-Nb-O System Films
Abstract
Objective: To quantitatively assess the hardness, elasticity, and plasticity, and to determine the influence of structure and substructure on these parameters in Li-Nb-O system films.
Experimental: Li-Nb-O system films with a thickness of ~0.8 μm were grown on non-heated substrates (oxidized single-crystal silicon wafers (SiO₂ layer ~0.4 μm), single-crystal lithium niobate with (0001) orientation) by ion beam sputtering of a lithium niobate target. Thermal annealing of Li-Nb-O films on substrates was performed in air for 10 min (until complete crystallization) at temperatures of 550, 650, 700, 750, 800, and 850 °C. The heterostructures (film/substrate) were cooled with the furnace. The phase composition of the films was investigated by X-ray diffraction (XRD) and selected area electron diffraction (SAED). The substructure was studied by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM, Tecnai G2 30ST) of cross-sectional specimens prepared by ion milling using a Quanta 3D setup. The surface morphology was investigated by scanning electron microscopy (SEM, Teskan Mira) in the topological
contrast mode and atomic force microscopy (AFM, Solver47). Mechanical properties – hardness (H) and Young's modulus (E) – were determined from nanoindentation (NI, NanoHardness Tester CSM Instruments) measurements using a Berkovich diamond indenter under the following conditions: maximum load 10 mN, loading rate 10 mN/min, and unloading rate 15 mN/min.
Results: It was found that thermal annealing in an oxygen-containing atmosphere at 750°C induces crystallization of quasi-amorphous Li-Nb-O films and the synthesis of single-phase LN films with lattice parameters closest to those of stoichiometric single-crystal LN. The most probable mechanisms of irreversible deformation in LN films are: brittle fracture, plastic deformation of crystallites, and grain boundary sliding. LN films synthesized at 650-750°C are most susceptible to brittle fracture. Brittle fracture occurs due to the buildup of macrostresses in the films, resulting from different coefficients of thermal expansion (CTE) of the film and the substrate. The fracture toughness of the films increases significantly when using a substrate with a CTE close to that of the film. The hardness of nano- and microcrystalline LN films is always higher than the hardness of quasi-amorphous Li-Nb-O system films. The decrease in the hardness of а films synthesized at high annealing temperatures is due to a decrease in the concentration of point defects and an increase in the size of the crystallites
Downloads
References
Huang C. H. J., Rabson T. A. Low-loss thin-film LiNbO3 optical waveguide sputtered onto a SiO2/Si substrate. Optics Letters. 1993;18(10): 811–813. https://doi.org/10.1364/OL.18.000811
Xu H., Dong S., Xuan W., … Luo J. Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film. Applied Physics Letters. 2018;112: 093502. https://doi.org/10.1063/1.5021663
Jiang H., Dai C., Shen B., Jun J. High-performance LiNbO3 domain wall memory devices with enhanced selectivity via optimized metal–semiconductor contact. Nanomaterials. 2024;14(12): 1031. https://doi.org/10.3390/nano14121031
He J., Ye Z. Highly C-axis oriented LiNbO3 thin film on amorphous SiO2 buffer layer and its growth mechanism Chinese Science Bulletin. 2003;48: 2290–2294. https://doi.org/10.1360/03ww0053
Maurel A., Mercier J.-F., Lund F. Lund scattering of an elastic wave by a single dislocation. The Journal of the Acoustical Society of America. 2004;115(6): 2773–2780. https://doi: 10.1121/1.1687735
Hewig G. M., Jain K., Sequeda F. O., Tom R., Wang P.-W. Sputtering of LiNbO3. Thin Films Thin Solid Films. 1982; 88: 67–74. https://doi.org/10.1016/0040-6090(82)90351-0
Paldi R. L., Qi Z., Misra S., … Wang H. Nanocomposite-seeded epitaxial growth of single-domain lithium niobate thin films for surface acoustic wave devices. Advanced Photonics Research. 2021;2: 2000149. https://doi.org/10.1002/adpr.202000149
Ievlev, V. M., Belonogov E. K., Dybov V. A., … Sumets M. P. Synthesis of lithium niobate during crystallization of amorphous Li–Nb–O film. Inorganic Materials. 2019;55(12): 1237–1241. https://doi.org/10.1134/S0020168519120069
Shandilya S., Tomar M., Gupta V. Deposition of stress free c-axis oriented LiNbO3 thin film grown on (002) ZnO coated Si substrate. Journal of Applied Physics. 2012;111: 10–16. https://doi.org/10.1063/1.4714664
Fakhri M. A., Salim E. T., Hashim U., Abdulwahhab A. W., Salim Z. T. Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3. Journal of Materials Science: Materials in Electronics. 2017;28: 16728–16735. https://doi.org/10.1007/s10854-017-7586-y
Zhu N., Chen J., Zhou P., Zhu Y. Effect of the anisotropy mechanical properties on LN crystals fixed-abrasive lapping Materialsю 2020;13(19): 4455. https://doi.org/10.3390/ma13194455
Fries E., Péter A. Plastic deformation of LiNbO3 single crystalsю Revue de Physique Appliquée. 1987;22(11): 1353–1359. https://doi.org/10.1051/rphys-ap:0198700220110135300
Péter Á., Fries E., Rivière J. P. TEM observation of plastically induced dislocations in lithium niobate LiNbO3 single crystals. Physica Status Solidi (a). 1991;128(1): 45–53. https://doi.org/10.1002/pssa.2211280106
Xie H., Lu Y.-C., Raj R. Transmission electron microscopy study of microstructure and misfit dislocations in epitaxial LiTaO3 thin films grown on sapphire by a metalorganic chemical vapor deposition process Journal of Applied Physics. 1996;79(7): 3675–3680. https://doi.org/10.1063/1.361197
Veignant F., Gandais M., Aubert P., Guy G. Epitaxial growth of LiNbO3 on αAl2O3 (0001). Thin Solid Films. 1998;336:(1-2): 163–167. https://doi.org/10.1016/S0040-6090(98)01222-X
Bartasyte A., Plausinaitiene V., Abrutis A., … Saltyte Z. Residual stresses and clamped thermal expansion in LiNbO3 and LiTaO3 thin films. Applied Physics Letters. 2012;101: 122902. https://doi.org/10.1063/1.4752448
Иевлев В. М., Канныкин С. В., Костюченко А. В., Белоногов Е. К., Путляев В. И. Об информативности рентгеновских дифрактограмм в виде гало. Неорганические Материалы. 2020:56(8): 906–913. https://doi.org/10.31857/s0002337x20080059
Shiozaki Y., Mitsui T. Powder neutron diffraction study of LiNbO3. Journal of Physics and Chemistry of Solids. 1963;24: 1057–1061. https://doi.org/10.1016/0022-3697(63)90012-x
Ievlev V. M., Kostyuchenko A. V., Darinskii B. M., Barinov S. M. Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings. Physics of the Solid State. 2014;56(2): 321–329. https://doi.org/10.1134/s1063783414020127
Nakamura M., Fujiyama H., Sumomogi T. Effects of material properties on ductile mode machining in ultraprecision grinding of lithium niobate. Hiroshima International University Research Report. 2012;45: 11–20. Available at: https://xueshu.baidu.com/usercenter/paper/show?paperid=a25d14fe8a5e8d01a7d1aad2ec1c522e
Hall E. O. Variation of hardness of metals with grain size. Nature. 1954; 173: 948–949. https://doi.org/10.1038/173948b0
Kim B.-N., Hiraga K., Sakka Y., Ahn B.-W. A grainboundary diffusion model of dynamic grain growth during superplastic deformation. Acta Materialia. 1999;47(12): 3433–3439. https://doi.org/10.1016/s1359-6454(99)00201-3
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








