Double borate NaScB2O5: synthesis, thermal stability, ionic conductivity, IR spectroscopy, and electronic structure
Abstract
Purpose: The double sodium scandium borate, NaScB2O5, whose crystal structure was solved by Backer and Held in 2001, remains a poorly explored object. The crystal structure has wide channels that may suggest ionic conduction of sodium ions. Based on this, the aim of the study was to investigate the ionic conductivity of this object, as well as to study its thermal behavior, measure the IR spectrum and calculate the electronic structure by quantum chemical method.
Experimental: The synthesis of sodium scandium double borate, NaScB2O5, was achieved using a solid-state reaction method. NaScB2O5 was explored by using thermal analysis, IR spectroscopy, ionic conductivity, theoretical estimates of activation energy, ion transport pathways, and Ab initio calculations of electronic structure.
Conclusions: Rietveld method was engaged: monoclinic symmetry (sp. gr. P21/c), a = 7.2460(2) Å, b = 9.7887(3) Å, c = 5.9289(2) Å, β = 71.318(1)°, Z = 4, V = 398.37(2) Å3, Rwp = 2.81, GOF = 1.64. NaScB2O5 borate is characterized by incongruent melting at 1090 °C. Ab initio calculated IR spectrum of NaScB2O5, exhibited a high degree of consistency with the experimentally obtained IR spectrum. The calculated energy barrier
for oxygen ion migration, determined to be 0.998 eV, exhibits a reasonable degree of agreement with the experimentally determined activation energy of 0.9 eV. The title compound exhibits an ionic conductivity of 0.6·10–3 S/cm at 1023 K. The band gap was about 6.83 eV
Downloads
References
Huang C., Mutailipu M., Zhang F., … Pan S. Expanding the chemistry of borates with functional [BO2]− anions. Nature Communications. 2021;12: 1–8. https://doi.org/10.1038/s41467-021-22835-4
Li S., Li W., Li X., … Li C. A bifunctional primitive strategy induces enhancements of large second harmonic generation and wide UV transmittance in rare-earth borates containing [B5O10] groups. Chemical Science. 2024;15: 8959–8965. https://doi.org/10.1039/d4sc01853b
Wu H., Wei Z., Hu Z., Wang J., Wu Y., Yu H. Assembly of π-conjugated [B3O6] units by mer-isomer [YO3F3] octahedra to design a UV nonlinear optical material, Cs2Yb3O6F2. Angewandte Chemie. 2024;136. https://doi.org/10.1002/ange.202406318
Zhang W., Hou X., Han S., Pan S. Toward the ultraviolet (UV) or deep-UV nonlinear optical crystals: the combination of π-conjugated planar [XY3] and tetrahedral [XY4]. Coordination Chemistry Reviews. 2024;505: 215664. https://doi.org/10.1016/j.ccr.2024.215664
Li Q.-F., Chen W.-F., Lan Y.-Z., Cheng J.-W. Recent progress in ultraviolet and deep-ultraviolet nonlinear optical aluminoborates. Chinese Journal of Structural Chemistry. 2023; 42(3): 100036. https://doi.org/10.1016/j.cjsc.2023.100036
Kang L., Lin Z. Deep-ultraviolet nonlinear optical crystals: concept development and materials discovery. Light: cience & Applications. 2022;11: 1–12. https://doi.org/10.1038/s41377-022-00899-1
Halasyamani P. S Zhang W. Viewpoint: inorganic materials for UV and deep-UV nonlinear-optical applications. Inorganic Chemistry. 2017;56: 12077–12085. https://doi.org/10.1021/acs.inorgchem.7b02184
Chen C., Li R. The anionic group theory of the nonlinear optical effect and its applications in the development of new high-quality nlo crystals in the borate series. International Reviews in Physical Chemistry. 1988;8: 65–91. https://doi.org/10.1080/01442358909353223
Chen C., Wu Y., Jiang A., …. Lin S. New nonlinearoptical crystal: LiB3O5. Journal of the Optical Society of America B. 1989;6(4): 616. https://doi.org/10.1364/josab.6.000616
Mori Y., Kuroda I., Nakajima S., Sasaki T., Nakai S. New nonlinear optical crystal: cesium lithium borate. Applided Physics Letters. 1995;67: 1818–1820. https://doi.org/10.1063/1.115413
Chen C. T., Wang G. L., Wang X. Y., Xu Z. Y. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications. Applied Physics B. 2009;97: 9–25. https://doi.org/10.1007/s00340-009-3554-4
Chen C., Wang Y., Wu B., Wu K., Zeng W., Yu L. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature. 1995;373: 322–324. https://doi.org/10.1038/373322a0
Fröhlich R., Bohatý L., Liebertz J. Acta Crystallographica Section C: Structural Chemistry. Die Kristallstruktur von Wismutborat, BiB3O6. 1984;40: 343–344. https://doi.org/10.1107/S0108270184004078
Guoqing Z., Jun X., Xingda C., …. Fuxi G. Growth and spectrum of a novel birefringent α-BaB2O4 crystal. Journal of Crystal Growth. 1998;191(3): 517–519. https://doi.org/10.1016/S0022-0248(98)00162-6
Zhang S., Wu X., Song Y., Ni D., Hu B., Zhou T. Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method. Journal of Crystal Growth. 2003;252: 246–250. https://doi.org/10.1016/S0022-0248(03)00867-4
Ming H., Xiaolong C., Yuping S., Jun L., Jingtai Z., Chengjun D. YBa3B9O18: a promising scintillation crystal. Crystal Growth and Design. 2007;7(2): 199–201. https://doi.org/10.1021/cg0606141
Chen X., Zhang B., Zhang F., …. Pan S. Designing an excellent deep-ultraviolet birefringent material for light polarization. Journal of the American Chemical Society. 2018;140: 16311–16319. https://doi.org/10.1021/JACS.8B10009
Berger S. V., Hassel O., Webb M., Rottenberg M. The crystal structure of cobaltpyroborate. Acta Chemica Scandinavica. 1950;4: 1054–1065. https://doi.org/10.3891/ACTA.CHEM.SCAND.04-1054
Cheng W. D., Zhang H., Zheng F. K., Chen J. T., Zhang Q. E., Pandey R. Electronic structures and linear optics of C2B2O5 (A = Mg, Ca, Sr) pyroborates. Chemistry of Materials. 2000;12: 3591–3594. https://doi.org/10.1021/cm000188l
Zhou C., Cheng J., Li H., Beysen S. Li3.366Mg0.317B2O5: the first pyroborate in the Li2O-MgO-B2O3 system. Inorganic Chemistry Communications. 2018;93: 92–96. https://doi.org/10.1016/j.inoche.2018.05.018
Maschmeyer E. M., Sanjeewa L. D., Ranmohotti G. S. Crystal structure of BaMnB2O5 containing structurally isolated manganese oxide sheets. Acta Crystallogr Sect E Crystallogr Commun. 2016;72: 1315–11320. https://doi.org/10.1107/S2056989016013074
Platunov M. S., Ivanova N. B., Kazak N. V., Ovchinnikov S. G. Crystal structure and magnetism of Co2−xNixB2O5 pyroborate. Journal of Siberian Federal University. Mathematics & Physics. 2011;4: 298–307. Режим доступа: https://elib.sfu-kras.ru/bitstream/handle/2311/2425/platunov.pdf?sequence=1
Busche S., Bluhm K. Synthese und Kristallstruktur der ersten zinkhaltigen Pyroborate Ni1.5Zn0.5(B2O5) und Co1.5Zn0.5(B2O5). Zeitschrift für Naturforschung B. 1995;50(10): 1445–1449. https://doi.org/10.1515/znb-1995-1003
Yan J., Chu D., Chen Z., Han J. Li2PbB2O5: a pyroborate with large birefringence induced by the synergistic effect of stereochemical active lone pair cations and π-conjugated [B2O5] groups. Inorganic Chemistry. 2022;61(46): 18795–801. https://doi.org/10.1021/acs.inorgchem.2c03469
Held P., Becker P. Dipraseodymium(III) pyroborate molybdate(VI), Pr2(B2O5)(MoO4). Crystallographic Communications. 2008;64(6). https://doi.org/10.1107/S1600536808010386
Zhang M., An D., Hu C., Chen X., Yang Z., Pan S. Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene. Journal of the American Chemical Society. 2019;141: 3258–3264. https://doi.org/10.1021/jacs.8b13402
Becker P., Held P. Crystal structure of sodium scandium borate, NaScB2O5. Zeitschrift für Kristallographie –New Crystal Structures. 2001;216(1-4): 35. https://doi.org/10.1524/NCRS.2001.216.14.35
Rietveld H. M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. 1969;2: 65–71. https://doi.org/10.1107/s0021889869006558
Coelho A. A. Topas: general profile and structure analysis software for powder diffraction data. Bruker AXS, 2005.
Dinnebier R. E., Leineweber A., Evans J. Rietveld refinement practical powder diffraction pattern analysis using TOPAS. 2019. https://doi.org/10.1515/9783110461381-201
Chen H., Wong L. L., Adams S. SoftBV – a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials. 2019;75: 18–33. https://doi.org/10.1107/S2052520618015718
Kresse G. Ab initio molecular dynamics for liquid metals. Journal of Non-Crystalline Solids. 1995;192–193: 222–229. https://doi.org/10.1016/0022-3093(95)00355-X
Perdew J. P., Ruzsinszky A., Csonka G. I., … Burke K. Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letter.s 2008;100: 1–4. https://doi.org/10.1103/PhysRevLett.100.136406
Togo A., Tanaka I. First principles phonon calculations in materials science. Scripta Materialia. 2015;108: 1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021
Krukau A. V., Vydrov O. A., Izmaylov A. F., Scuseria G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of Chemical Physics. 2006; 125(22). https://doi.org/10.1063/1.2404663
Shendrik R. Yu., Plechov P. Yu., Smirnov S. Z. ArDI –the system of mineral vibrational spectroscopy data processing and analysis. New Data on Minerals. 2024;58(2): 26–35. (In Russ.). https://doi.org/10.25993/fm.2024.58.2024.008
Copyright (c) 2025 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases

This work is licensed under a Creative Commons Attribution 4.0 International License.








