TOTAL AND PARTIAL CURRENT-VOLTAGE CHARACTERISTICS OF ANION-EXCHANGE MEMBRANES IN NaCl AND NaH2PO4 SOLUTIONS

  • Ksenia А. Tsygurina graduate student, Kuban State University; ph.: (861) 2199573, e-mail: nepovinovenie@bk.ru
  • Olesya А. Rybalkina graduate student, Laboratory Assistant of Physical Chemistry Department, Kuban State University; ph.: (861) 2199573, e-mail: olesia93rus@mail.ru
  • Ekaterina D. Melnikova Cand. Sci. (Chem.), Senior Researcher, Kuban State University; ph.: (861) 2199573, e-mail: ekaterinabelashova23@gmail.ru
  • Natalia D. Pismenskaya Dr. Sci. (Chem.), Professor of Physical Chemistry Department, Kuban State University; ph.: (861) 2199573, e-mail: n_pismen@mail.ru
Keywords: electrodialysis, anion exchange membrane, ampholytes, total and partial current-voltage characteristics

Abstract

Anions of phosphoric acid are nutrients. They are necessary for people, animals or plants to ensure normal life. The combination of biochemical and various membrane methods with electrodialysis as a finishing step for selective extraction and concentration of nutrients has already proved its economic and environmental feasibility. The complexity of experimental and theoretical studies of the phosphate transfer mechanisms in systems with ion-exchange membranes is because the amphoteric properties of this substance.

This work is aimed to investigate the transfer mechanisms in the desalting channels of electrodialyzers containing NaH2PO4 solution. The object of the study is the homogeneous anion exchange membrane AX in a 0.02 M NaH2PO4 solution.

Due to the protonation-deprotonation reactions of the dihydrogen phosphate anion, the last can be transformed into hydrogen phosphate and phosphate anions with the formation of protons and hydroxyl ions, which can participate in the charge transfer in the AX/NaH2PO4 system. As a result, the transport of phosphates in systems with ion-exchange membranes is characterized by anomalous (in comparison with NaCl solutions) concentration dependences of electrical conductivity, diffusion permeability, and current-voltage characteristics, which have two plateaus.

In this paper, we propose a simple method that allows us to determine the partial currents and transport numbers of counter ions through the anion exchange membrane, and to estimate the number of protons coming from the membrane boundary into the desalting channel of the electrodialyzer in the under-limiting and over-limiting current modes.

Using this method, it was found that the transformation of single-charged anions H2PO4- in the membrane first into double-charged HPO42- and then into triple-charged PO43- ions causes differences in the shape of the total current-voltage characteristics in comparison with obtained in NaCl solutions.

ACKNOWLEDGEMENTS

The work was supported by the Russian Foundation for Basic Research, project No.16-48-230852 reg_a.

Downloads

Download data is not yet available.

References

1. Chin J. P., McGrath J. W., Quinn J. P. Curr. Opin. Chem. Biol, 2016, vol. 31, pp. 50-57. DOI: 10.1016/j.cbpa.2016.01.010
2. Duhamel S., Björkman K. M., Repeta D. J., Karl D. M. Prog. Oceanography, 2017, vol. 151, pp. 261-274. DOI: 10.1016/j.pocean.2016.12.007
3. Liu R., Wang Y., Wu G., Luo J., Wang S. Chem. Eng. J., 2017, vol. 322, pp. 224-233. DOI: 10.1016/j.cej.2017.03.149
4. Mondor M., Masse L., Ippersiel D., Lamarche F., Massé D. I. Bioresour. Technol., 2008, vol. 99, no. 15, pp. 7363-7368. DOI: 10.1016/j.biortech.2006.12.039
5. Xie M., Shon H. K., Gray S. R., Elimelech M. Water Res., 2016, vol. 89, pp. 210-221. DOI: 10.1016/j.watres.2015.11.045
6. Viader R. P., Jensen P. E., Ottosen L. M., Ahrenfeldt J., Hauggaard-Nielsen H. Waste Manage., 2017, vol. 60, pp. 211–218. DOI: 10.1016/j.wasman.2016.11.030
7. Tran A. T. K., Zhang Y., Lin J., Mondal P., Ye W., Meesschaert B., Pinoy L., Van der Bruggen B. Sep. Purif. Technol., 2015, vol. 141, pp. 38-47. DOI: 10.1016/j.seppur.2014.11.017
8. Rottiers T., Van der Bruggen B., Pinoy L. J. Membrane Sci., 2017, vol. 541, pp. 550-557. DOI: 10.1016/j.memsci.2017.07.042
9. Couto N., Guedes P., Ferreira A. R., Teixeira M. R., Mateus E. P., Ribeiro A. B. Electrochimica Acta, 2015, vol. 181, pp. 200-207. DOI: 10.1016/j.electacta.2015.04.081
10. Novalin S., Kongbangkerd M., Reisinger S. Sep. Purif. Technol., 2017, vol. 182, pp. 224 – 229. DOI: 10.1016/j.seppur.2017.03.052
11. Lide D. R. CRC Handbook of Chemistry and Physics. CRC Press, New York, 1995.
12. Sarapulova V., Nevakshenova E., Pismenskaya N., Dammak L., Nikonenko V. J. Membrane Sci., 2015, vol. 479, pp. 28-38. DOI: 10.1016/j.memsci.2015.01.015
13. Vasil’eva V. I., Vorob’eva V. I. Russ. J. Phys. Chem. A, 2012, vol. 86, pp. 1852. DOI: 10.1134/S0036024412110271
14. Belashova E. D., Pismenskaya N. D., Nikonenko V. V., Sistat P., Pourcelly G. J. Membr. Sci., 2017, vol. 542, pp. 177–185. DOI: 10.1016/j.memsci.2017.08.002
15. GOST 17553-72. Ion Exchange Vembranes. Methods of Preparation for the Test. Moscow, Publishing House of Standards, 1972, 4 p.
16. Belashova E. D., Melnik N. A., Pismenskaya N. D., Shevtsova K. A., Nebavsky A. V., Lebedev K. A., Nikonenko V. V. Electrochim. Acta, 2012, vol. 59, pp. 412-423. DOI: 10.1016/j.electacta.2011.10.077
17. Pismenskaya N. D., Nikonenko V. V., Belova E. I., Lopatkova G. Yu., Sistat Ph., Pourcelly G., Larchet C. Russ. J. Electrochem., 2007, vol. 43. No. 3. pp. 307-327. DOI: 10.1134/S102319350703010X
18. Sheldeshov N. V., Ganych V. V., Zabolotsky V. I. Russ. J. Electrochem., 1991, vol. 27, no. 10, pp. 1245–1249.
19. Lactionov E. V., Pismenskaya N. D., Nikonenko V. V., Zabolotsky V. I. Desalination, 2002, vol. 152, pp. 101–116. DOI: 10.1016/S0011-9164(02)00988-8
20. Roques H. Fondements Theoriques du Traitment Chimique des Eaux (2 vols). Technique et Documentation, Lavoisier, Paris, 1990.
21. Newman J. S. Electrochemical Systems. New York, Prentice Hall, Englewood Cliffs, 1973, 309 p.
22. Rösler H.-W., Maletzki F., Staude E. J. Membr. Sci., 1992, vol. 72, pp. 171-179. DOI: 10.1016/0376-7388(92)85010-G
23. Krol J. J., Wessling M., Strathmann H. J. Membr. Sci., 1999, vol. 162, pp. 145-154. DOI: 10.1016/S0376-7388(99)00133-7
24. Nikonenko V., Kovalenko A., Urtenov M., Pismenskaya N., Han J., Sistat P., Pourcelly G. Desalination, 2014, vol. 342, pp. 85-106. DOI: 10.1016/j.desal.2014.01.008
25. Nikonenko V. V., Mareev S. A., Pismenskaya N. D., Uzdenova A. M., Kovalenko A. V., Urtenov M. H., Pourcelly G. Russ. J. Electrochem., 2017, vol. 53, no. 10, pp. 1122–1144. DOI: 10.1134/S1023193517090099
26. Kharkats Yu. Sov. Electrochem., 1985,vol. 21, no. 7, pp. 917-920. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022085954&partnerID=40&md5=b25c1079ed70bec7d092c502fd5c2794
27. Simons R. Nature, 1979, vol. 280, pp. 824-826. DOI: 10.1016/0013-4686(84)87040-1
Published
2017-12-28
How to Cite
TsygurinaK. А., RybalkinaO. А., Melnikova, E. D., & Pismenskaya, N. D. (2017). TOTAL AND PARTIAL CURRENT-VOLTAGE CHARACTERISTICS OF ANION-EXCHANGE MEMBRANES IN NaCl AND NaH2PO4 SOLUTIONS. Kondensirovannye Sredy I Mezhfaznye Granitsy = Condensed Matter and Interphases, 19(4), 585-595. https://doi.org/10.17308/kcmf.2017.19/241
Section
Статьи