Thermodynamic investigation of the Bi2Se3–Bi2Te3 system by the EMF method
Abstract
Binary and complex chalcogenides with a tetradimite-like layered structure are of great practical interest as topological insulators, thermoelectric, and optoelectronic materials. Their fundamental thermodynamic functions in combination with phase diagrams are important for the development and optimization of methods for the synthesis and growth of crystals. The work presents the results of a thermodynamic study of the starting compounds and solid solutions of the Bi2Se3-Bi2Te3 system using the method of electromotive forces (EMF). Various modifications of this method are widely used to study
binary and complex metal chalcogenides. Studies were carried out by EMF measurements of the concentration chains of the following type: (–) Bi (solid) | ionic liquid + Bi3+ | Bi in the alloy (solid) (+)
in the temperature range 300–450 K.
The pre-synthesized equilibrium Bi2Se3–хTex alloys (x = 0; 0.6; 1.2; 1.8; 2.0; 2.4; 3.0) with a 0.5 at% excess tellurium were used as right electrodes. Ionic liquid (morpholine formate) with the addition of BiCl3 was used as the electrolyte. The acquired experimental data were processed by the Microsoft Office Excel 2003 computer program using the least-squares method and linear equations of the type E = a + bT were obtained. The obtained equations of the EMF temperature dependences were used to calculate the relative partial molar functions of bismuth in the alloys. The diagram of solid-phase equilibria of the Bi–Se–Te system was used to determine the equations of potential-forming reactions and the latter were
used to calculate the standard thermodynamic functions of the formation and standard entropies of Bi2Se3, Bi2Te3 compounds and Bi2Se3–xTex solid solutions of the above compositions. The thermodynamic functions of the formation of Bi2Se3–xTex solid solutions from the initial binary compounds were also calculated. The results correlate well with the structural data that suggests some ordering in the arrangement of selenium and tellurium atoms in the b-phase crystal lattice of the Bi2SeTe2 composition: selenium atoms predominantly occupy the central layer of the five-layer, and tellurium atoms are
located in the two outer layers.
REFERENCES
1. Rowe D. M. Thermoelectrics Handbook: Macro to
Nano. Boca Raton, FL, USA: CRC Press, Taylor &
Francis Group; 2006. 1008 р.
2. Shevelkov A. V. Chemical aspects of the design
of thermoelectric materials. Russ. Chem. Rev.
2008;77(1): 1–19. DOI: https://doi.org/10.1070/rc2008v077n01abeh003746
3. Adam A. M., Lilov E., Ibrahim E. M. M., Petkov P.,
Panina L. V., Darwish M. A. Correlation of structural
and optical properties in as-prepared and annealed
Bi2Se3 thin films. Journal of Materials Processing
Technology. 2019;264: 76–83. DOI: https://doi.org/10.1016/j.jmatprotec.2018.09.005
4. Wang Q., Wu X., Wu L., Xiang Y. Broadband
nonlinear optical response in Bi2Se3–Bi2Te3
heterostructure and its application in all-optical
switching. AIP Advances 9. 2019; 025022. DOI: https://doi.org/10.1063/1.5082725
5. Hosokawa Y., Wada K., Tanaka M., Tomita K.,
Takashiri M. Thermal annealing effect on structural
and thermoelectric properties of hexagonal Bi2Te3
nanoplate thin films by drop-casting technique.Japanese Journal of Applied Physics. 2017;57(2S2):
02CC02. DOI: https://doi.org/10.7567/jjap.57.02cc02
6. Adam A. M., Elshafaie A., Abd El-Moez A. M.,
Petkov P., Ibrahim E. M. M. Thermoelectric properties
of Te doped bulk Bi2Se3 system. Materials Research
Express. 2018;5(3): 035514. DOI: https://doi.org/10.1088/2053-1591/aab5e8
7. Flammini R., Colonna S., Hogan C., Mahatha S.,
Papagno M., Barla A., Sheverdyaeva P., Moras P.,
Aliev Z., Babanly M. B, Chulkov E. V., Carbone C.,
Ronci F. Evidence of b-antimonene at the Sb/Bi2Se3
interface. Nanotechnology. 2018;29(6): 065704. DOI:
https://doi.org/10.1088/1361-6528/aaa2c4
8. Hogan C., Holtgrewe K., Ronci F., Colonna S.,
Sanna S., Moras P., Sheverdyaeva P. M., Mahatha S.,
Papagno M., Aliev Z. S., Babanly M. B., Chulkov E. V.,
Carbone C., Flammini R. Temperature driven phase
transition at the antimonene/Bi2Se3 van der Waals
heterostructure. ACS Nano. 2019;13(9): 10481–10489.
DOI: https://doi.org/10.1021/acsnano.9b04377
9. Otrokov M. M., Ernst A., Mohseni K., Fulara H.,
Roy S., Castro G. R., Rubio-Zuazo J., Ryabishchenkova
A. G., Kokh K. A., Tereshchenko O. E., Aliev Z. S.,
Babanly
M. B., Chulkov E. V., Meyerheim H. L.,
Parkin S. S. P. Geometric and electronic structure of
the Cs-doped Bi2Se3(0001) surface. Phys. Rev. B.
2017;95(20): 205429. DOI: https://doi.org/10.1103/physrevb.95.205429
10. Lamuta C., Cupolillo A., Politano A., Aliev Z. S.,
Babanly M. B., Chulkov E. V., Pagnotta L. Indentation
fracture toughness of a single-crystal Bi2Te3 topological
insulator. Nano Research. 2016;9(4): 1032–1042. DOI:
https://doi.org/10.1007/s12274-016-0995-z
11. Viti L., Coquillat D., Politano A., Kokh K. A.,
Aliev Z. S., Babanly M. B., Tereshchenko O. E., Knap W.,
Chulkov E. V., Vitiello M. S. Plasma-wave terahertz
detection mediated by topological insulators surface
states. Nano Letters. 2016;16(1): 80−87. DOI: https://doi.org/10.1021/acs.nanolett.5b02901
12. Babanly M. B., Chulkov E. V., Aliev Z. S.,
Shevel’kov A. V., Amiraslanov I. R. Phase diagrams in
materials science of topological insulators based on
metal chalkogenides. Russ. J. Inorg. Chem. 2017;62(13):
1703–1729. DOI: https://doi.org/10.1134/S0036023617130034
13. Otrokov M. M., Klimovskikh I. I., Bentmann H.,
et al. Prediction and observation of the antiferr
omagnetic topological insulator. Nature .
2019;576(7787): 416–422. DOI: https://doi.org/10.1038/s41586-019-1840-9
14. Shanna Z., Gang S., Peng Z., Dechao M.,
Genhao L., Xiaofang Z., Yalin L., Yongqing L., Lan C.,
Kehui W. Growth and transport properties of topological
insulator Bi2Se3 thin film on a ferromagnetic insulating
substrate. Chinese Physics B. 2017;27(7). DOI: https://doi.org/10.1088/1674-1056/27/7/076801
15. Walsh L. A., Smyth C. M., Barton A. T.,
Qingxiao W., Zifan C., Ruoyu Y., Jiyoung K., Moon J. K.,
Wallace R.M., Hinkle C. L. Interface chemistry of
contact metals and ferromagnets on the topological
insulator Bi2Se3. J. Phys. Chem. C. 2017;121(42): 23551–
23563. DOI: https://doi.org/10.1021/acs.jpcc.7b08480
16. Liguo Z., Dapeng Z., Yunyi Z., Yonghao Y.,
Gaoyuan J., Menghan L., Ding Z., Ke H., Xucun M.,
Qikun X. Ferromagnetism in vanadium-doped Bi2Se3
topological insulator films. APL Materials. 2017;5(7):
076106. DOI: https://doi.org/10.1063/1.4990548
17. Voronin G. F., Gerasimov Ya. I. The role of
chemical thermodynamics in the development of
semiconductor materials science In: Thermodynamics
and Semiconductor Materials. Moscow: MIET Publ.,
1980. p. 3–10. Available at: https://search.rsl.ru/ru/record/01001069961 (In Russ.)
18. Babanly M. B., Mashadiyeva L. F., Babanly D. M.,
Imamaliyeva S. Z., Taghiyev D. B., Yusibov Y. A. Some
issues of complex investigation of the phase equilibria
and thermodynamic properties of the ternary
chalcogenid systems by the EMF method. Russian J.
Iniorg.Chem. 2019;64(13): 1649–1671. DOI: https://doi.org/10.1134/S0036023619130035
19. Barin I. Thermochemical data of pure substances.
Third Edition. Weinheim: Wiley-VCH; 1995. DOI:
https://doi.org/10.1002/9783527619825
20. Кubaschewski O., Alcock C. B., Spenser P. J.
Materials Thermochemistry. New York: Pergamon Press; 1993. 350 p.
21. Baza dannykh termicheskikh konstant veshchestv.
Elektronnaya versiya pod. red. V. S. Yungmana. 2006
[Database of thermal constants of substances.
Electronic version under. ed. V. S. Yungman. 2006].
Available at: http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcom.html
22. Gerasimov Ya. I., Krestovnikov A. N, Gorbov S. I.
Khimicheskaya termodinamika v tsvetnoi metallurgii.
Spravochnik. t. 6 [Chemical thermodynamics in
nonferrous metallurgy. Directory. vol. 6] Moscow:
Metallurgiya Publ.; 1974. 312 p. (In Russ.)
23. Sidorko V. R., Goncharuk L. V., Antonenko R. V.
Thermodynamic properties of bismuth sesquiselenide
and sesquitelluride and their solid solutions. Powder
Metallurgy and Metal Ceramics. 2008;47: 234–241. DOI:
https://doi.org/10.1007/s11106-008-9009-3
24. Voronin G. F. Partsial’nye termodinamicheskie
funktsii geterogennykh smesei i ikh primenenie v
termodinamike splavov [Partial thermodynamic
functions of heterogeneous mixtures and their
application in the thermodynamics of alloys]. In:
Modern problems of physical chemistry, vol. 9.
Moscow: MSU Publ., 1976. pp. 29–48. (In Russ.)
2 5 . Wa g n e r K . Termodinamika splavov
[Thermodynamics of alloys]. Moscow: Metallurgizdat
Publ.; 1957. 179 p. (In Russ.)
26. Morachevsky A. G., Voronin G. F., Geyderich V. A.,
Kutsenok I. B. Elektrokhimicheskie metody issledovaniya
v termodinamike metallicheskikh sistem ITsK
[Electrochemical methods of investigation in thermodynamics of metal systems]. Moscow:
Akademkniga Publ.; 2003. 334 p. (In Russ.)
27. Babanly M. B., Yusibov Y. A. Elektrokhimicheskie
metody v termodinamike neorganicheskikh sistem
[Electrochemical methods in thermodynamics
of inorganic systems]. Baku: BSU Publ.; 2011. 306 p.
28. Vassiliev V., Gong W. Electrochemical cells with
the liquid electrolyte in the study of semiconductor,
metallic and oxide systems. In: Electrochemical cells –
new advances in fundamental researches and applications.
Shao Y. Rijeka (ed.) IntechOpen; 2012. pp. 71–102.
DOI: https://doi.org/10.5772/39007
29. Babanly D. M., Veliyeva G. M., Imamaliyeva S. Z.,
Babanly M. B. Thermodynamic functions of arsenic
selenides. Russ. J. Phys. Chem. A. 2017;91(7): 170–1173.
DOI: https://doi.org/10.1134/s0036024417070044
30. Aliev Z. S., Musayeva S. S., Jafarli F. Y.,
Amiraslanov I. R., Shevelkov A. V., Babanly M. B. The
phase equilibria in the Bi–S–I ternary system and
thermodynamic properties of the BiSI and Bi19S27I3
ternary compounds. Journal of Alloys and Compounds.
2014;610: 522–528. DOI: https://doi.org/10.1016/j.jallcom.2014.05.015
31. Jafarov Y. I., Ismaylova S. A., Aliev Z. S.,
Imamaliyeva S. Z., Yusibov Y. A., Babanly M. B.
Experimental study of the phase diagram and
thermodynamic properties of the Tl–Sb–S system.
Calphad. 2016;55: 231–237. DOI: https://doi.org/10.1016/j.calphad.2016.09.007
32. Imamaliyeva S. Z., Babanly D. M., Gasanly T. M.,
Tagiev D. B., Babanly M. B. Thermodynamic properties
of Tl9GdTe6 and TlGdTe2. Russian Journal of Physical
Chemistry A. 2018;92(11): 2111–2117. DOI: https://doi.org/10.1134/s0036024418110158
33. Moroz M. V., Prokhorenko M. V., Prokhorenko
S. V., Yatskov M. V., Reshetnyak O. V. Thermodynamic
properties of AgIn2Te3I and AgIn2Te3Br,
determined by the EMF method. Russian Journal of
Physical Chemistry A. 2018;92(1): 19–23. DOI: https://doi.org/10.1134/s0036024418010168
34. Kozin L. F., Nigmetova R. Sh. Termodinamicheskie
svoistva zhidkikh splavov olovo-rtut’ [Thermodynamic
properties of liquid tin-mercury alloys]. Russian J.
Inorgan.Chem. 1963;8(11): 2556–2562. (In Russ.)
35. Aliev Z. S., Musayeva S. S. Imamaliyeva S. Z.,
Babanlэ M. B. Thermodynamic study of antimony
chalcoiodides by EMF method with an ionic liquid. J.
Therm. Anal. Calorim. 2018;133(2): 1115–1120. DOI:
https://doi.org/10.1007/s10973-017-6812-4
36. Imamaliyeva S. Z., Musayeva S. S., Babanly D. M.,
Jafarov Y. I., Tagiyev D. B., Babanly M. B. Determination
of the thermodynamic functions of bismuth
chalcoiodides by EMF method with morpholinium
formate as electrolyte. Thermochimica Acta. 2019;679:
178319. DOI: https://doi.org/10.1016/j.tca.2019.178319
37. Brigouleix C., Anouti M., Jacquemin J., Caillon-
Caravanier M., Galiano H., Lemordant D. Physicochemical
characterization of morpholinium cation
based protic ionic liquids used as electrolytes. J. Phys.
Chem. B. 2010;114(5): 1757–1766. DOI: https://doi.org/10.1021/jp906917v
38. Abrikosov N. Kh., Bankina V. F., Poretskaya L. V.,
et al. Poluprovodnikovye khal’kogenidy i splavy na ikh
osnove [Semiconductor chalcogenides and alloys based
on them]. Moscow: Nauka Publ.; 1975. 220 p. (In Russ.)
39. Chizhevskaya S. N. Shelimova L. E. Se–Te phase
diagram and structures of amorphous and crystalline
Se1–xTex alloys: critical review. Russ. J. Inorg. Chem.
1997;42(5): 827-837.
40. Ghosh G., Lukas H. L., Delaey L. A thermodynamic
assessment of the Se-Te system. Calphad. 1988;12(3):
295–299. DOI: https://doi.org/10.1016/0364-5916(88)90010-7
41. Vasilev V. P., Somov A. P., Nikol’skaya A. V.,
Gerasimov Ya. I. Issledovanie termodinamicheskikh
svoistv selenida vismuta metodom EDS [Investigation
of the thermodynamic properties of bismuth selenide
by the EMF method]. Zh. Fiz. khimii., 1968:42(3):
675–677. (In Russ.)
42. Melekh B. T. and Semenkovich S. A.
Termodinamicheskie svoistva tellurida i selenida
trekhvalentnogo vismuta [Thermodynamic properties
of telluride and selenide of trivalent bismuth]. Izv. AN
SSSR. Neorgan. Mater. 1968;4(8): 1346–1348. (In Russ.)
43. Gerasimov Ya. I. and Nikol’skaya A. V.
Termodinamicheskie svoistva tellurida vismuta (Bi2Te3)
i tellurida sur’my (Sb2Te3) [Thermodynamic properties
of bismuth telluride (Bi2Te3) and stibium telluride
(Sb2Te3). In: Metallurgy and Physics of Semiconductors.
Moscow: 1961. p. 30–33. (In Russ.)
Downloads
Copyright (c) 2020 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.