Experimental study and mathematical modelling of self-oscillation at the electrode-magnetic fluid interface in an electric field

Keywords: Magnetic fluid, Interface, Near-electrode layer, Electric field, Self-oscillation, Mathematical model

Abstract

The article describes a mathematical model of self-oscillation in the form of a boundary value problem for a nonlinear system of partial differential equations, with a numerical solution. The numerical results were compared to the experimental data to confirm the adequacy of the model. The model uses the classical system of differential equations of material balance, Nernst-Planck and Poisson equations without simplifications or fitting parameters. The aim of the article was to study the parameters of concentration self-oscillation in a layer of the dispersed phase particles of magnetic fluid at the interface with an electrode in an electric field. For this purpose, we developed a mathematical model, the consistency of which was
confirmed by the corresponding physical mechanism.
As a result of numerical experiments, we found the critical value of the potential jump after which self-oscillation began. We also determined the oscillation growth period and other characteristics of the process. We developed software called AutoWave01 with an intuitive user interface and advanced functionality for the study of self-oscillation in a thin layer of magnetic colloid.

Downloads

Download data is not yet available.

Author Biographies

Vladimir S. Chekanov, North-Caucasus Federal University, 1 Pushkina ul., Stavropol 355017, Russian Federation

PhD in Technical Sciences,
Associate Professor at the Department of Information
Systems and Technologies, North-Caucasus Federal
University, Stavropol, Russian Federation; e-mail:
oranjejam@mail.ru

Evgeniya V. Kirillova, RheinMain University of Applied Sciences 18 Kurt-Schumacher-Ring, Wiesbaden 65197, Germany

PhD in Physics and
Mathematics, Professor at the RheinMain University
of Applied Sciences in Wiesbaden, Germany; e-mail:
kirillova@web.de

Anna V. Kovalenko, Kuban State University, 149 Stavropolskaya ul., Krasnodar 350040, Russian Federation

DSc in Physics and Mathematics,
Associate Professor, Head of the Department of Data
Analysis and Artificial Intelligence, Kuban State
University, Krasnodar, Russian Federation; e-mail:
Savanna-05@mail.ru

Elena N. Diskaeva, MIREA – Russian Technological University, 8 Kulakova pr., Stavropol 355000, Russian Federation

PhD in Physics and Mathematics,
Associate Professor at the Department of Industrial
Technologies, Branch of “MIREA – Russian
Technological University” in Stavropol, Stavropol,
Russian Federation; e-mail: diskaevapes@mail.ru

References

Muradova A. G., Sharapaev A. I., Zaytseva M. P., Kuznetsova S. A., Yurtov E. V. Nanostructured iron oxides. Advances in Chemistry and Chemical Technology. 2019; 1 (211): 77–78. Available at: https://www.elibrary.ru/item.asp?id=38098384 (In Russ., abstract in Eng.)

Zakinyan A. Electrical conductivity of inverse magnetic fluid emulsion. Magnetohydrodynamics. 2018;54(1-2):163–166. https://doi.org/10.22364/mhd.54.1-2.29

Chekanov V. V., Kandaurova N. V., Rakhmanina Yu. A., Chekanov V. S. Indikator ul’trazvuka 2 [Ultrasound indicator 2]. Patent RF, no. 2446384, 2012. Publ. 27.03.2012, bull. no. 9.

Chekanov V. V., Kandaurova N. V., Rakhmanina Yu. A., Chekanov V. S. Indikator teplovogo izlucheniya [Heat radiation indicator]. Patent RF, no. 2446422, 2012. Publ. 27.03.2012, bull. no. 9.

Chekanov V. V., Kandaurova N. V., Rakhmanina Yu. A., Chekanov V. S. Indikator raznosti potentsialov [Potential difference indicator]. Patent RF, no. 2449382, 2012. Publ. 27.04.2012, bull. no. 12.

Chekanov V. V., Kandaurova N. V., Chekanov V. S. Observation of the autowave process in the nearelectrode layer of the magnetic fluid. Spiral waves formation mechanism. Journal of Molecular Liquids. 2018; 272: 828–833. https://doi.org/10.1016/j.molliq.2018.10.073

Shliomis M. I. Magnetic fluids. Uspekhi Fizicheskih Nauk. 1974; 112 (3): 427. https://doi.org/10.3367/ufnr.0112.197403b.0427

Rosenzweig R. E. Ferrohydrodynamics. Cambridge University Press; 1985. 344 p.

Born M., Wolf E. Principles of optics. Pergamon Press; 1959. 803 p.

Chekanov V. V., Kandaurova N. V. Chekanov V. S., Romantsev V. V. Application of electrically controlled interference to observe the autowave process in the near-electrode layer of a magnetic fluid and in an electroprojectible color filter. Journal of Optical Technology. 2019; 86 (1): 21–26.

https://doi.org/10.17586/1023-5086-2019-86-01-21-26

Zhakin A. I. Ionic conductivity and complexation in liquid dielectrics. Uspekhi Fizicheskih Nauk. 2003; 173 (1): 51–68. https://doi.org/10.3367/ufnr.0173.200301c.0051 (In Russ.)

Zhakin A. I. Kinetika agregirvaniya v nepolyarnykh zhidkikh dielektrikakh. [Aggregation kinetics in non-polar liquid dielectrics.] Elektronnaya obrabotka materialov (Electronic Processing of Materials). 2015; 51 (4): 49–60. https://eom.ifa.md/en/journal/shortview/1206 (In Russ., abstract in Eng.)

Zhakin A. I. Near-electrode and transient processes in liquid dielectrics. Uspekhi Fizicheskih Nauk. 2006; 176 (3): 279–310. https://doi.org/10.3367/ufnr.0176.200603d.0289

Zhakin A. I. Electrohydrodynamics. Uspekhi Fizicheskih Nauk. 2012; 55 (5): 465–488. https://doi.org/10.3367/ufne.0182.201205b.0495

Stishkov Yu. K., Bogdanov D. V. Effect of nonequilibrium near-electrode layers on the structure of EHD flows in the three-ions model of a dielectric liquid. Technical Physics. 2017; 62(8): 1156–1162. https://doi.org/10.1134/s1063784217080266

Kozhevnikov V. M., Larionov Yu. A., Demin M. S. Charge transfer and accumulation in a layer of a magnetodielectric colloid with nanosized particles. Vestnik Severo-Kavkazskogo Federalnogo Universiteta (Newsletter of North-Caucasus Federal University). 2008; 3: 46-50. Available at:

https://www.elibrary.ru/item.asp?id=11674845 (In Russ., abstract in Eng.)

Kolesnikova A., Zakinyan A. Rotating magnetic field induced structure formation in a magnetic fluid emulsion. Magnetohydrodynamics. 2018;54(1-2): 45–48. https://doi.org/10.22364/mhd.54.1-2.8

Kuz’ko A. E., Chekanov V. S. Anisotropy of magnetic fluid conductivity in constant magnetic fields. Surface Engineering and Applied Electrochemistry. 2020; 56 (6): 727–733. https://doi.org/10.3103/S1068375520060095

Kozhevnikov V. M., Larionov Y. A., Chuenkova I. Y. Features of electrical properties in a structured thin magnetic fluid layer. Magnetohydrodynamics. 2018;54(1-2): 55–59. https://doi.org/10.22364/mhd.54.1-2.10

Dukhin S. S., Estrela L’opis V. R., Zholkovskii E. K. Elektropoverkhnostnye yavleniya i elektrofil’trovanie [Electrosurface phenomena and electrofiltration]. Kiev: Naukova dumka Publ.; 1985. 288 p. (In Russ.)

Erin K. V. Study of the kinetics of space charge formation in colloidal magnetic nanoparticles in liquid dielectrics. Surface Engineering and Applied Electrochemistry. 2017; 53 (4): 327–332. https://doi.org/10.3103/S1068375517040044

Erin K. V. An electro-optical study of electrophoresis of colloidal magnetite particles in kerosene in the field of near-electrode volume charge. Colloid Journal. 2015; 77 (1): 20–24. https://doi.org/10.1134/s1061933x15010068

Vavilin V. A. Avtokolebaniya v zhidkofaznykh khimicheskikh sistemakh [Self-oscillations in liquidphase chemical systems]. Priroda. 2000; 5: 19–24. Available at: https://w w w.elibrar y.ru/item.asp?id=35128874 (In Russ.)

Chekanov V. V., Kandaurova N. V., Chekanov V. S. Effect of a nearsurface nanolayer formation on the magnetic fluid electrical properties. Acta Technica. 2018; 63 (4): 555–562.

Chekanov V. S., Kovalenko A. V., Diskaeva E. N., Kirillova, E. V. Mathematical modeling of autowave process in a thin layer of magnetic colloid. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation. 2020; 17 (4): 57–67. https://doi.org/10.31429/vestnik-17-4-57-67

Urtenov M. K., Uzdenova A. M., Kovalenko A. V. Nikonenko V. V., Pismenskaya N. D., Vasil’eva V. I., Pourcelly G. Basic mathematical model of overlimiting transfer enhanced by electroconvection in flowthrough electrodialysis membrane cells. Journal of Membrane Science. 2013; 447: 190–202. https://doi.org/10.1016/j.memsci.2013.07.033

Nikonenko V. V., Vasil’eva V. I., Akberova E. M., Uzdenova A. M., Urtenov M. K., Kovalenko A. V., Pismenskaya N. D., Mareev S. A., Pourcelly G. Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes. Advances in Colloid and Interface Science. 2016; 235: 233–246. https://doi.org/10.1016/j.cis.2016.06.014

Gudza V. A., Pismenskiy A. V., Urtenov M. K., Shkorkina I. V., Chubyr N. O., Kovalenko А. V. The influence of water dissociation/recombination on transport of binary salt in diffusion layer near ionexchange membrane. Journal of Advanced Research in Dynamical and Control Systems. 2020; 12 (4): 923–935. https://doi.org/10.5373/JARDCS/V12SP4/20201563

Kovalenko A. V., Yzdenova A. M., Sukhinov A. I., Chubyr N. O., Urtenov M. Kh. Simulation of galvanic dynamic mode in membrane hydrocleaning systems taking into account space charge. AIP Conference Proceedings. 2019; 2188 (1): 050021. https://doi.org/10.1063/1.5138448

Published
2021-11-24
How to Cite
Chekanov, V. S., Kirillova, E. V., Kovalenko, A. V., & Diskaeva, E. N. (2021). Experimental study and mathematical modelling of self-oscillation at the electrode-magnetic fluid interface in an electric field. Condensed Matter and Interphases, 23(4), 626-636. https://doi.org/10.17308/kcmf.2021.23/3683
Section
Original articles