Growth of InGaAsSb/GaSb compound for infrared optoelectronic devices
Abstract
In this study, we report on the synthesis of InGaAsSb epi-layer for optoelectronic devices in short infrared wavelengths (SWIR) at room temperature (RT).
The InGaAsSb with lattice matched to GaSb substrate was grown by the molecular beam epitaxy (MBE) using the strain engineering. The structural and optical properties of InGaAsSb layer was investigated by high resolution X-ray diffractometer (XRD), and photoluminescence (PL). Devices with a 400×400 μm of size were fabricated using traditional photolithography and inductively coupled plasma etching. The spectral response of InGaAsSb photodetector with a 90% cutoff wavelength and electroluminescence spectra of light emitting diode (LED) obtained at 2.38 μm at an applied bias of –0.1 V and 2.25 μm with Jic = 500 mA, respectively at room temperature. Also, the spectral response of the detector indicates an increasing intensity and low noise when the temperature is high.
Downloads
References
Benoit J., Boulou M., Soulage G., Joullie A., Mani H. Performance evaluation of GaAlAsSb/GaInAsSb SAM-APDs for high bit rate transmissions in the 2.5 μm wavelength region. Journal of Optical Communications. 1988;9(2): 55. https://doi.org/10.1515/joc.1988.9.2.55
Carter B. L., Shaw E., Olesberg J. T., Chan W. K., Hasenberg T. C., Flatte M. E. High detectivity GaInAsSb pin infrared photodetector for blood glucose sensing. Electronics Letters. 2000;36(15): 1301–1303. https://doi.org/10.1049/el:20000956
Suchalkin S., Jung S., Kipshidze G., Shterengas L., Hosoda T., Westerfeld D., Snyder D., Belenky G. GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions. Applied Physics Letters. 2008; 93(8): 081107. https://doi.org/10.1063/1.2974795
Gibson D., MacGregor C. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment. Sensors. 2013;13(6): 7079–7103. https://doi.org/10.3390/s130607079
Craig A. P., Jain M., Wicks G., Golding T., Hossain K., McEwan K., Howle C., Percy B., Marshall A. R. J. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb. Applied Physics Letters. 2015;106(20): 201103. https://doi.org/10.1063/1.4921468
Martyniuk P., Kopytko M., Rogalski A. Barrier infrared detectors. Opto-Electronics Review. 2014;22(2): 127–146. https://doi.org/10.2478/s11772-014-0187-x
Hoang A. M., Dehzangi A., Adhikary S., Razeghi M. High performance bias-selectable three-color shortwave/mid-wave/long-wave infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices. Scientific Reports. 2016;6(1): 24144. https://doi.org/10.1038/srep24144
Scholz L., Perez A. O., Knobelspies S., Wöllenstein J., Palzer S. MID-IR LED-based, photoacoustic CO2 sensor. Procedia Engineering. 2015;120: 1233–1236. https://doi.org/10.1016/j.proeng.2015.08.837
Refaat T. F., Abedin M. N., Koch G. J., Singh U. N. InGaAsSb detectors’ characterization for CO2 Lidar/DIAL applications. NASA Langley Research Center; Hampton, VA, 23681-2199. United States: 2003. p. 32.
Joullié A., Christol P. GaSb-based mid-infrared 2–5 μm laser diodes. Comptes Rendus Physique. 2003;4(6): 621–637. https://doi.org/10.1016/s1631-0705(03)00098-7
Cherng M. J., Jen H. R., Larsen C. A., Strigfellow G. B., Lundt H., Taylor P. C. MOVPE growth of GaInAsSb. Journal of Crystal Growth. 1986;77(1-3): 408–417. https://doi.org/10.1016/0022-0248(86)90331-3
Gong X., Yang B., Ma Y., Gao F., Yu Y., Han W., Lui X., Xi J., Wang Z., Lin L. Liquid phase epitaxy growth and properties of GaInAsSb/AlGaAsSb/GaSb heterostructures. Japanese Journal of Applied Physics. 1991;30(7R): 1343–1347. https://doi.org/10.1143/jjap.30.1343
Reddy M. H. M., Olesberg J. T., Cao C., Prineas J. P. MBE-grown high-efficiency GaInAsSb midinfrared detectors operating under back illumination. Semiconductor Science and Technology. 2006;21(3): 267–272. https://doi.org/10.1088/0268-1242/21/3/009
Kim J. O., Nguyen T. D., Ku Z., Urbas A., Kang S.‑W., Lee S. J. Short wavelength infrared photodetector and light emitting diode based on InGaAsSb. Infrared Technology and Applications XLIII. 2017. https://doi.org/10.1117/12.2264969
Nguyen T. D., Hwang J., Kim Y., Kim E.-T., Kim J. O., Lee S. J. Dual-wavelength InGaAsSb/AlGaAsSb quantum-well light-emitting diodes. Journal of the Korean Physical Society. 2018;72(10): 1249–1253. https://doi.org/10.3938/jkps.72.1249
Nguyen T. D., Kim J. O., Kim Y. H., Kim E. T., Nguyen Q. L., Lee S. J. Dual-color short-wavelength infrared photodetector based on InGaAsSb/GaSb heterostructure. AIP Advances. 2018;8(2): 025015. https://doi.org/10.1063/1.5020532
Reddy M. H. M., Olesberg J. T., Cao C., Prineas J. P. MBE-grown high-efficiency GaInAsSb midinfrared detectors operating under back illumination. Semiconductor Science and Technology. 2006;21(3): 267–272. https://doi.org/10.1088/0268-1242/21/3/009
Copyright (c) 2022 Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases
This work is licensed under a Creative Commons Attribution 4.0 International License.