О механизме рекристаллизации халькогенидов висмута при фотонной обработке некогерентным излучением

  • Евгений Константинович Белоногов ФГБОУ ВО «Воронежский государственный технический университет», ул. 20-летия Октября, 84, Воронеж 394006, Российская Федерация; ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация https://orcid.org/0000-0002-0216-0986
  • Сергей Борисович Кущев ФГБОУ ВО «Воронежский государственный технический университет», ул. 20-летия Октября, 84, Воронеж 394006, Российская Федерация https://orcid.org/0000-0003-1263-1806
  • Дмитрий Владимирович Сериков ООО «Воронежское конструкторское бюро средств связи», ул. Краснодонская, 16Б, Воронеж 394019, Российская Федерация https://orcid.org/0000-0002-0464-3500
  • Сергей Анатольевич Солдатенко ФГБОУ ВО «Воронежский государственный технический университет», ул. 20-летия Октября, 84, Воронеж 394006, Российская Федерация https://orcid.org/0000-0002-3927-2738
  • Татьяна Леонидовна Тураева ФГБОУ ВО «Воронежский государственный технический университет», ул. 20-летия Октября, 84, Воронеж 394006, Российская Федерация https://orcid.org/0000-0002-6126-1605
Ключевые слова: фотонная обработка, рекристаллизация, электронно-микроскопическое изображение, рентгеновская дифрактометрия, наноструктурированный слой, дефекты кристаллической решетки, халькогениды висмута

Аннотация

Цель работы: Выявление природы и систематизация механизмов формирования градиентной структуры в приповерхностном слое халькогенида висмута при фотонной обработке некогерентным излучением ксеноновых ламп.

Экспериментальная часть: Методами просвечивающей электронной микроскопии, рентгеновской дифрактометрии, фотометрии исследованы полупроводниковые термоэлектрические ветви на основе твердых растворов Bi2Te3−Bi2Se3. Рассмотрена природа наноструктурирования и формирования градиентного слоя в приповерхностной области термоэлектрика Bi2Te3-хSeх при фотонной обработке некогерентным излучением ксеноновых ламп.

Выводы: Показано, что эти процессы могут быть обусловлены последовательностью самостоятельных процессов: ростом концентрации свободных электронов, снижением порога дефектообразования, локализация в скин-слое высокого градиента температуры, генерацией и распространением звуковых фононов, собирательной и вторичной рекристаллизацией, образованием нанокристаллической фазы в системе Bi-Te-Se

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Евгений Константинович Белоногов, ФГБОУ ВО «Воронежский государственный технический университет», ул. 20-летия Октября, 84, Воронеж 394006, Российская Федерация; ФГБОУ ВО «Воронежский государственный университет», Университетская пл., 1, Воронеж 394018, Российская Федерация

д. ф.-м. н., доцент, профессор кафедры физики, Воронежский государственный технический университет (Воронеж, Российская Федерация)

Сергей Борисович Кущев, ФГБОУ ВО «Воронежский государственный технический университет», ул. 20-летия Октября, 84, Воронеж 394006, Российская Федерация

д. ф.-м. н., профессор, профессор кафедры физики, Воронежский государственный
технический университет (Воронеж, Российская Федерация)

Дмитрий Владимирович Сериков, ООО «Воронежское конструкторское бюро средств связи», ул. Краснодонская, 16Б, Воронеж 394019, Российская Федерация

к. ф.-м. н., инженер-исследователь, Воронежское конструкторское бюро средств связи (Воронеж, Российская Федерация)

Сергей Анатольевич Солдатенко, ФГБОУ ВО «Воронежский государственный технический университет», ул. 20-летия Октября, 84, Воронеж 394006, Российская Федерация

к. ф.-м. н., с. н. с., доцент кафедры физики, Воронежский государственный
технический университет (Воронеж, Российская Федерация)

Татьяна Леонидовна Тураева, ФГБОУ ВО «Воронежский государственный технический университет», ул. 20-летия Октября, 84, Воронеж 394006, Российская Федерация

к. ф.-м. н., доцент, заведующий кафедрой физики, Воронежский государственный технический университет (Воронеж, Российская Федерация)

Литература

Belonogov E. K., Dybov V. A., Kostyuchenko A. V., Kushev S. B., Serikov D. V., Soldatenko S. A. The effect of pulsed photonic treatment on the mechanical properties of emiconductor thermoelectric branches (based on Bi2Te3−Bi2Se3 solid solutions) and adhesion of the switching layers. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2019;5: 17–24. https://doi.org/10.1134/S0207352819050056

Grebennikov A. A., Bocharov A. I., Kushchev S. B., … Safonov I. A. Effect of pulsed photon treatment on electrophysical and thermal properties of n-type solid solution on the base of Bi2Te3–Bi2Se3. I. Electrophysical characteristics. Physics and Chemistry of Materials Treatment. 2019;5: 14–20. https://doi.org/10.30791/0015-214-2019-5-14-20

Grebennikov A. A., Bocharov A. I., Kushchev S. B., … Safonov I. A. Effect of pulsed photon treatment on electrophysical and thermal properties of n-type solid solution on the base of Bi2Te3-Bi2Se3. II. Thermal conductivity and thermoelectric figure of merit. Physics and Chemistry of Materials Treatment. 2019;6: 22–27. https://doi.org/10.30791/0015-3214-2019-6-22-27

Belonogov E. K., Kuschev S. B., Sumets M. P., … Turaeva T. L. The effect of photonic processing on increasing the thermoelectric Q-factor of a solid solution Bi2Te3–Bi2Se3. Inorganic Materials: Applied Research. 2023;14(3): 595–603. https://doi.org/10.1134/s2075113323030061

Kapustin Yu. A., Kolokolnikov B. M., Sveshnikov A. A. Photostimulated gold diffusion during pulsed photon processing*. Semiconductors. 1990;24(2): 318–322. Available at: http://journals.ioffe.ru/articles/viewPDF/22840

Vavilova V. V., Kovneristyi Yu. K., Palii N. A., Timofeev V. N., Ievlev V. M., Isaenko A. P. Effects of thermal annealing and pulsed photon processing on the relaxation and crystallization of amorphous Fe-P-Si alloys. Inorganic Materials. 2004;40(2): 152–160. https://doi.org/10.1023/B:INMA.0000016090.36608.2f

Ievlev V. M., Soldatenko S. A., Kushev S. B., Gorozhankin Yu. V., Vakhtel V. M. Effect of photon activation during the synthesis of silicide films in the heterosystem (111) Si-Ni-Pt. Condensed Matter and Interphases. 2007;9(3): 216–227. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/download/elibrary_9596050_91117226.pdf

Belyavskij V. I., Kapustin Yu. A., Sviridov V. V. Subthreshold defect formation during high-power pulse processing of silicon*. Semiconductors. 1991;25(7): 1204–1208. (In Russ.). Available at: http://journals.ioffe.ru/articles/viewPDF/23492

Kushchev S. B. Study of the phase composition and substructure of silicides formed during pulsed photon processing of metal films on silicon by incoherent radiation*. Doct. phys. math. sci. diss. Abstr. Voronezh: 2000. 35 p. (In Russ.). Available at: https://viewer.rsl.ru/ru/rsl01000244921?page=1&rotate=0&theme=white

Ievlev V. M., Latyshev A. N., Selivanov V. N., Turaeva T. L., Sinel’Nikov A. A. Effect of photon irradiation on the process of recrystallization of thin metallic films. Physics of Metals and Metallography. 2007;103(1): 58–63. https://doi.org/10.1134/s0031918x07010073

Ievlev V. M. Activation of solid-phase processes by radiation of gas-discharge lamps. Russian Chemical reviews. 2013; 82(9): 815–834. https://doi.org/10.1070/rc2013v082n09abeh004357

Serbin O. V. Synthesis of nanodispersed films of lead titanate and tungsten carbide using pulsed photon processing. Cand. phys. math. sci. diss. Voronezh: 2003. 119 p. (In Russ.). Available at: https://www.dissercat.com/content/sinteznanodispersnykh-plenok-titanata-svintsa-i-karbidavolframa-metodom-impulsnoi-fotonnoi

Marshak I. S. Pulsed light sources*. Moscow – Leningrad: Gosenergoizdat Publ.; 1963. 336 p. (In Russ.)

Veis A. N., Zhitinskaya M. K., Lukyanova L. N., Kutasov V. A. Peculiarities of bismuth telluride energy spectrum from optical measurements data. SPbPU Journal -Physics and Mathematics. 2013;3(177): 29–41. (In Russ.).

Available at: https://physmath.spbstu.ru/userfiles/files/articles/2013/3/03.pdf

Fleurial J. P., Gailiard L., Triboulet R., Scherrer H., Scherrer S. Thermal properties of high quality single сrystals of bismuth telluride – part I: Experimental characterization. Journal of Physics and Chemistry of Solids. 1988;49(10): 1237–1247. https://doi.org/10.1016/0022-3697(88)90182-5

Gurevich M. M. Photometry (theory, methods and instruments)*. Leningrad: Energoatomizdat Publ.; 1983. 272 p. (In Russ.)

Saberi Y., Sajjadi S. A., Mansouri H. Comparison of thermoelectric properties of Bi2Te3 and Bi2Se0,3Te2,7 thin film materials synthesized by hydrothermal process and thermal evaporation. Ceramics International. 2021;47: 11547–11559. https://doi.org/10.1016/j.ceramint.2020.12.285

Adam A. M., Tolan M., Refaat A.A., Nafady A., Petkov P., Ataalla M. Optical properties of thin Bi2Te3 films synthesized by different techniques. Superlattices and Microstructures. 2021;155: 106909. https://doi.org/10.1016/j.spmi.2021.106909

Newell D. B., Tiesinga E. The International System of Units (SI). National Institute of Standards and technology Special Publication 330. 2019: 122. https://doi.org/10.6028/NIST.SP.330-2019

Ivanov O., Yaprintsev M., Lyubushkin R., Soklakova O. Enhancement of thermoelectric efficiency in Bi2Te3 via rare earth element doping. Scripta Materialia. 2018;146: 91–94. https://doi.org/10.1016/j.scriptamat.2017.11.031

Carterb M. J., El-Desoukyc A., Matthieu A. A., Philippe B., LeBlanca S. Pulsed laser melting of bismuth telluride thermoelectric materials. Journal of Manufacturing Processes. 2019;43: 35–46. https://doi.org/10.1016/j.jmapro.2019.04.021

Zimmer A., Stchakovsky M., Stein N., Johann L., Eypert C., Boulanger C. Optical constants of electroplated Bi2Te3 films by Mueller matrix spectroscopic ellipsometry. Thin Solid Films. 2008;516(10): 2922–2927. https://doi.org/10.1016/j.tsf.2007.06.011

Srinivasan R., McReynolds K., Gothard N. W., Spowart J. E. Texture development during deformation processing of the n-type bismuth telluride alloy Bi2Se0.3Te2.7. Materials Science and Engineering: A. 2013;588(А): 376–387. https://doi.org/10.1016/j.msea.2013.09.044.

Markevich M. I., Tochizki I. I., Chaplanov A. M. On the kinetics of redistribution of vacancies in f.c.c. metals films under high rate heating. Thin Solid Films. 1989;168(3): 363–368. https://doi.org/10.1016/0040-6090(89)90020-5

Markevich M. I., Chaplanov A. M. Structural transformations in thin metal films under pulsed laser irradiation. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series (Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk). 2016;1: 28–35. (In Russ.) Available at: https://vestift.belnauka.by/jour/article/view/151/152

Honeycomb R. Plastic deformation of metals*. Moscow: Mir; 1972. 408 p. (In Russ.)

Vavilova V. V., Ievlev V. M., Isaenko A. P., … Selivanov V. N. Hypersonic mechanism of photon activation of solid-phase processes*. In: The effect of electromagnetic fields on the plasticity and strength of materials. Materials of the 5th international conference, February 14–15, 2003. Voronezh: VSTU Publ.; 2003. p. 31–33. (In Russ.)

Medvedev E. S., Osherov V. I. Theory of non-radiative transitions in polyatomic molecules*. Moscow: Nauka Publ.; 1983. 280 p. (In Russ.)

Belonogov E. K., Dybov V. A., Kostyuchenko A. V., … Soldatenko S. A. Modification of the surface of thermoelectric branches based on a Bi2Te3–Bi2Se3 solid solution by pulse photon treatment method. Condensed Matter and Interphases. 2017;19(4): 479–488. (In Russ., abstract in Eng.). Available at: https://elibrary.ru/download/elibrary_32322272_25557687.pdf

Опубликован
2025-03-24
Как цитировать
Белоногов, Е. К., Кущев, С. Б., Сериков, Д. В., Солдатенко, С. А., & Тураева, Т. Л. (2025). О механизме рекристаллизации халькогенидов висмута при фотонной обработке некогерентным излучением . Конденсированные среды и межфазные границы, 27(2), 203-210. https://doi.org/10.17308/kcmf.2025.27/12764
Раздел
Оригинальные статьи