Исследование влияния стехиометрии порошков (AgxCu1–x)0.7GaSe2 на их фазовый состав, структуру и времена жизни фотогенерированных носителей тока
Аннотация
Цель статьи: В данной работе серия порошков (AgxCu1-x)0.7GaSe2 (0 ≤ x ≤ 1) была получена методом твердофазного синтеза из предварительно синтезированных тройных систем Cu0.7GaSe2 и Ag0.7GaSe2.
Экспериментальная часть: Комбинацией методов рентгенофазового анализа и спектроскопии комбинационного рассеяния установлено, что область твердых растворов в данной системе узкая и лежит в диапазоне при 0.8 ≤ x < 1.
Выводы: Исследование спектров низкотемпературной люминесценции и спадов микроволновой фотопроводимости показало, что для однофазных образцов характерно увеличение времен жизни фотогенерированных носителей тока, что, по-видимому, обусловлено заменой глубоких ловушек для носителей заряда, таких как вакансии селена VSe, более мелкими катионными вакансиями меди VCu и ассоциатами VSe-VCu
Скачивания
Литература
Turner J. A. Sustainable hydrogen production. Science. 2004;305(5686): 972-4. https://doi.org/10.1126/science.1103197
Chiu Y. H., Lai T. H., Kuo M. Y., Hsieh P. Y., Hsu Y. J. Photoelectrochemical cells for solar hydrogen production: Challenges and opportunities. APL Materials. 2019;7(8). https://doi.org/10.1063/1.5109785
Yokoyama D., Minegishi T., Maeda K., ... Domen K. Photoelectrochemical water splitting using a Cu(In, Ga)Se2 thin film. Electrochemistry Communications. 2010;12(6): 851–853. https://doi.org/10.1016/j.elecom.2010.04.004
Barreto L., Makihira A., Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy. 2003;28(3): 267–284. https://doi.org/10.1016/S0360-3199(02)00074-5
Chen Y., Feng X., Liu M., Su J., Shen S. Towards efficient solar-to-hydrogen conversion: fundamentals and recent progress in copper-based chalcogenide photocathodes. Nanophotonics. 2016;5(4): 524–547. https://doi.org/10.1515/nanoph-2016-0027
Zhang L., Minegishi T., Kubota J., Domen K. Hydrogen evolution from water using AgxCu1– xGaSe2 photocathodes under visible light. Physical Chemistry Chemical Physics. 2014;16(13): 6167–6174. https://doi.org/10.1039/c3cp54590c
Valderrama R. C., Sebastian P. J., Enriquez J. P., Gamboa S. A. Photoelectrochemical characterization of CIGS thin films for hydrogen production. Solar Energy Materials and Solar Cells. 2005;88(2): 145–155. https://doi.org/10.1016/j.solmat.2004.10.011
Marsen B., Dorn S., Cole B., Rocheleau R. E., Miller E. L. Copper chalcopyrite film photocathodes for direct solarpowered water splitting. MRS Online Proceedings Library (OPL). 2006;974: 0974-CC09. https://doi.org/10.1557/PROC-0974-CC09-05
Jacobsson T. J., Platzer-Björkman C., Edoff M., Edvinsson T. CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation. International Journal of Hydrogen Energy. 2013;38(35): 15027–15035. https://doi.org/10.1016/j.ijhydene.2013.09.094
Conibeer G., Willoughby A. (eds.). Solar cell materials: developing technologies. John Wiley & Sons; 2014. 344 p. https://doi.org/10.1002/9781118695784
Rudmann D., Brémaud D., Zogg H., Tiwari A. N. Na incorporation into Cu(In, Ga)Se2 for high-efficiency flexible solar cells on polymer foils. Journal of Applied Physics. 2005;97(8). https://doi.org/10.1063/1.1857059
Ikeda S., Fujita W., Katsube R., … Yoshino K. Crystalline-face-dependent photoelectrochemical properties of single crystalline CuGaSe2 photocathodes for hydrogen evolution under sunlight radiation. Electrochimica Acta. 2023;454: 142384. https://doi.org/10.1016/j.electacta.2023.142384
Mahmoudi B., Caddeo F., Lindenberg T., … Maijenburg A. W. Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5. Electrochimica Acta. 2021;367: 137183. https://doi.org/10.1016/j.electacta.2020.137183
Rabenok E. V., Gapanovich M. V. Study of the decay kinetics of photogenerated current carriers in Ag1−xCuxGaSe2 solid solutions. High Energy Chemistry. 2023;57(2): 174–175. https://doi.org/10.1134/S0018143923020108
Rakitin V. V., Gapanovich M. V., Lutsenko D. S., … Kabyliatski A. V. Studying the effect of composition on the crystal structure, optical properties, and photogenerated current carriers lifetimes in AgxCu1–xGaSe2 (0 ≤ x ≤ 1) solid solutions. High Energy Chemistry. 2024;58(5): 492-498. https://doi.org/10.1134/S0018143924700474
Novikov G. F., Marinin A. A., Rabenok E. V. Microwave measurements of the pulsed photoconductivity and photoelectric effect. Instruments and Experimental Techniques. 2010; 53(2): 233–239. https://doi.org/10.1134/S0020441210020144
Barman B., Handique K. C., Kalita P. K. Observation of negative differential resistance (NDR) in chemically synthesized CuGaSe2 nanorods. Materials Letters. 2024;357: 135638. https://doi.org/10.1016/j.matlet.2023.135638
Swamy H. G., Naidu B. S., Reddy P.J. Structure and optical properties of CuGaSe2 thin films. Vacuum. 1990; 41(4-6): 1445–1447. https://doi.org/10.1016/0042-207X(90)93985-R
Karaagac H., Parlak M. Effects of annealing on structural and morphological properties of e-beam evaporated AgGaSe2 thin films. Applied Surface Science. 2009;255(11): 5999–6006. https://doi.org/10.1016/j.apsusc.2009.01.054
Karaagac H., Parlak M. Deposition and characterization of layer-by-layer sputtered AgGaSe2 thin films. Applied Surface Science. 2011;257(13): 5731–5738. https://doi.org/10.1016/j.apsusc.2011.01.087
Isik M., Gasanly N. M. Investigation of structural and optical characteristics of thermally evaporated Ga2Se3 thin films. Vacuum. 2020;179: 109501. https://doi.org/10.1016/j.vacuum.2020.109501
Isik M., Sarigul N., Gasanly N. M. Thermoluminescence characteristics of GaSe and Ga2Se3 single crystals. Journal of Luminescence. 2022;246: 118846. https://doi.org/10.1016/j.jlumin.2022.118846
Theodoropoulou S., Papadimitriou D., Doka S., Schedel-Niedrig T., Lux-Steiner M. C. Structural properties of Ge oped CuGaSe2 films studied by Raman and photoluminescence spectroscopy. Thin Solid Films. 2007; 515(15): 5904–5908. https://doi.org/10.1016/j.tsf.2006.12.163
Cui Y., Roy U. N., Bhattacharya P., Parker A., Burger A., Goldstein J. T. Raman spectroscopy study of AgGaSe2, AgGa0.9In0.1Se2, and AgGa0.8In0.2Se2 crystals. Solid State Communications. 2010;150(35-36): 1686–1689. https://doi.org/10.1016/j.ssc.2010.06.022
Boyle J. H., McCandless B. E., Shafarman W. N., Birkmire R. W. Structural and optical properties of (Ag, Cu) (In, Ga)Se2 polycrystalline thin film alloys. Journal of Applied Physics. 201;115(22). https://doi.org/10.1063/1.4880243
Nigge K. M., Baumgartner F. P., Bucher E. CVT-growth of AgGaSe2 single crystals: electrical and photoluminescence properties. Solar Energy Materials and Solar Cells. 1996;43(4): 335–343. https://doi.org/10.1016/0927-0248(96)00007-4
Artus L., Bertrand Y. Anomalous temperature dependence of fundamental gap of AgGaS2 and AgGaSe2 chalcopyrite compounds. Solid State Communications. 1987;61(11): 733–736. https://doi.org/10.1016/0038-1098(87)90727-7
Weiss T., Birkholz M., Saad M., … Lux-Steiner M. C. Ag-doped CuGaSe2 as a precursor for thin film solar cells. Journal of Crystal Growth. 1999;198: 1190–1195. https://doi.org/10.1016/S0022-0248(98)01152-X
Schön J. H., Riazi-Nejad H., Kloc C., Baumgartner F. P., Bucher E. Photoluminescence properties of doped-and undoped-CuGaSe2 single crystals. Journal of Luminescence. 1997;72: 118–120. https://doi.org/10.1016/S0022-2313(96)00385-7
Copyright (c) 2025 Конденсированные среды и межфазные границы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.





