Гидратационные свойства гетерогенных ионообменных мембран после их длительного использования в электродиализной переработке сточных вод производства минеральных удобрений
Аннотация
Цель статьи: В данной работе изучается эволюция гидратационных характеристик гетерогенных катионо- и анионообменных мембран в ходе электродиализной обработки многокомпонентных растворов солей.
Экспериментальная часть: Объектами исследования являются гетерогенные мембраны RalexCMH-Pes (сульфокатионообменные) и RalexAMH-Pes (анионообменные с четвертичными аммониевыми группами), которые в течение разного периода времени эксплуатировались в промышленном электродиализаторе при концентрировании/обессоливании жидких отходов производства комплексных минеральных удобрений. Гидратационные характеристики мембран определены с применением метода синхронного термического анализа. Морфология поверхности изучаемых мембран изучена методом растровой электронной микроскопии. Рентгенофазовый анализ зольного
остатка после отжига мембран осуществляли с помощью дифрактометрического метода.
Выводы: Влагосодержание и удельная теплота дегидратации изученных мембран увеличиваются в ходе длительной электродиализной переработки жидких отходов производства комплексных минеральных удобрений. Для катионообменных и анионообменных мембран влагосодержание возрастает соответственно на 74 и 68 %. Преобладающим типом кинетически неравноценной воды в мембранах является слабо- и среднесвязанная вода. Молекулы сильносвязанной воды, участвующие в ион-дипольных взаимодействиях с активными функциональными группами, представлены в мембранах в наименьшей степени, причем при эксплуатации в электродиализаторе их доля увеличивается в случае катионообменных мембран в 1.35 раза и снижается в анионообменных мембранах в 1.3 раза. Рост влагосодержания и перераспределение долей воды разной степени связанности можно объяснить деградацией мембран, вызванной их морфологическими изменениями (увеличение количества дефектов и размера макропор, заполняемых раствором или водой), а также растяжением матрицы мембран из-за наличия в перерабатываемых жидких отходах больших и сильно гидратированных ионов. Кроме того, в нанопорах анионообменных мембран имеет место накопление гидрофильных неорганических осадков.
Скачивания
Литература
Al-Amshawee S., Yunus M. Y. B. M., Azoddein A. A. M., Hassell D. G., Dakhil I. H., Hasan H. A. Electrodialysis desalination for water and wastewater: a review. Chemical Engineering Journal. 2020;380: 122231. https://doi.org/10.1016/j.cej.2019.122231
Fadillah G., Hidayat R., Saputra A., … Ohira S.-I. Advanced electrodialysis techniques for analytical separation: a comprehensive review. Analytica Chimica Acta. 2025: 344637. https://doi.org/10.1016/j.aca.2025.344637
Konarev A. Use of electrodialysis in the pilot- and commercial-scale production of pharmaceutical substances. Russian Journal of Electrochemistry. 2015;51: 1124–1134. https://doi.org/10.1134/S1023193515110051
Wang M., Kuang S., Wang X., ... Zhang Y. Transport of amino acids in soy sauce desalination process by electrodialysis. Membranes. 2021;11: 408. https://doi.org/10.3390/membranes11060408
Mohammadi R., Tang W., Sillanpää M. A systematic review and statistical analysis of nutrient recovery from municipal wastewater by electrodialysis. Desalination. 2021; 498: 114626. https://doi.org/10.1016/j.desal.2020.114626
Xie M., Shon H. K., Gray S. R., Elimelech M. Membranebased processes for wastewater nutrient recovery: technology, challenges, and future direction. Water Research. 2015;89: https://doi.org/10.1016/j.watres.2015.11.045
Ferrari F., Pijuan M., Molenaar S., … Radjenovic J. Ammonia recovery from anaerobic digester centrate using onsite pilot scale bipolar membrane electrodialysis coupled to membrane stripping. Water Research. 2022;218: 118504. https://doi.org/10.1016/j.watres.2022.118504
Vineyard D., Hicks A., Karthikeyan K., Davidson Ch., Barak Ph. Life cycle assessment of electrodialysis for sidestream nitrogen recovery in municipal wastewater treatment. Cleaner Environmental Systems. 2021;2: 100026. https://doi.org/10.1016/j.cesys.2021.100026
Mondor M., Masse L., Lamarche F., Massé D. Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresource technology. 2008;99: 7363-8. https://doi.org/10.1016/j.biortech.2006.12.039
Pismenskaya N. D., Rybalkina O. A., Tsygurina K. A., … Bazinet L. Production of cheap phosphorus-ammonium fertilizers using electrodialysis. Problems and solutions. In: Membrane process modeling: abstracts of the international conference dedicated to the 60th anniversary of Professor A. N. Filippov. December 3-4, 2020, Moscow. Moscow: Logos Publ.; 2020. P. 68–69. Available at: https://kvm.gubkin.ru/Abstracts_RGU.pdf
Huang Ch., Xu T., Zhang Y., Xue Y., Chen G. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. Journal of Membrane Science. 2007;288: 1. https://doi.org/10.1016/j.memsci.2006.11.026
Bagastyo A. Y., Anggrainy A. D., Nindita C. S., Warmadewanthi. Electrodialytic removal of fluoride and calcium ions to recover phosphate from fertilizer industry wastewater, Sustainable Environment Research. 2017;27(5): 230–237. https://doi.org/10.1016/j.serj.2017.06.002
Hikmawati D., Bagastyo A., Warmadewanthi I. Electrodialytic recovery of ammonium and phosphate ions in fertilizer industry wastewater by using a continuous-flow reactor. Journal of Ecological Engineering. 2019;20: 255. https://doi.org/10.12911/22998993/109461
Niftaliev S. I., Kozaderova O. A., Kim K. B., Malyavina Yu. M., Electrodialysis in the treatment of itrogencontaining wastewater of a mineral fertilizer manufacturing enterprise*. Chemical Industry Developments. 2014;7: 52. (in Russ.). Available at: https://elibrary.ru/item.asp?id=22017822
Bokhary A., Tikka A., Leitch M., Liao B.Q. Membrane fouling prevention and control strategies in pulp and paper industry applications: a review. Membrane. 2018;4(4): 181. https://doi.org/10.22079/jmsr.2018.83337.1185
Apel P. Yu., Velizarov S., Volkov A. V., Yaroslavtsev A. B. Fouling and membrane degradation in electromembrane and baromembrane processes. Membranes and Membrane Technologies. 2022;4: 69–92. https://doi.org/10.1134/S2517751622020032
Gally C. R., Benvenuti T., Trindade C. M., … Bernardes A. M. Electrodialysis for the tertiary treatment of municipal wastewater: Efficiency of ion removal and ageing of ion exchange membranes. Journal of Environmental Chemical Engineering. 2018;6(5): 5855–5869. https://doi.org/10.1016/j.jece.2018.07.052
Vasil’eva V. I., Akberova E. M., Kostylev D. V., Tzkhai A. A. Diagnostics of the structural and transport properties of an anion-exchange membrane MA-40 after use in electrodialysis of mineralized natural waters. Membranes and Membrane Technologies. 2019;1(3): 153–167. https://doi.org/10.1134/S2517751619030077
Vasil’eva V. I., Akberova E. M., Goleva E. A., Yatsev A. M., Tzkhai A. A. Changes in the microstructure and operational characteristics of the MK-40 sulfocationexchange membrane during the electrodialysis of natural waters. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2017;11(2): 429–436. https://doi.org/10.1134/S1027451017020367
Pasechnaya E. L., Ponomar M. A., Klevtsova A. V., Korshunova A. V., Sarapulova V. V., Pismenskaya N. D. Characteristics of aliphitic and aromatic ion-exchange membranes after electrodialysis tartrate stabilization of wine materials Membranes and Membrane Technologies. 2024;14(4): 317–332. https://doi.org/10.31857/S2218117224040079
Ghalloussi R., Garcia-Vasquez W., Bellakhal N., … Grande D. Ageing of ion-exchange membranes used in electrodialysis: Investigation of static parameters, electrolyte permeability and tensile strength. Separation and Purification Technology. 2011;80(2): 270-275. https://doi.org/10.1016/j.seppur.2011.05.005
Ghalloussi R., Chaabane L., Dammak L., Grande D. Ageing of ion-exchange membranes used in an electrodialysis for food industry: SEM, EDX, and limiting current investigations. Desalination and Water Treatment. 2015;56(10): 2561–2566. https://doi.org/10.1080/19443994.2014.968908
Kharina A. Yu., Charushina O. E., Eliseeva T. V. Organic fouling of anion-exchange and bipolar membranes during the separation of amino acid and sucrose by electrodialysis. Condensed Matter and Interphases.. 2023;25(2): 268–276. https://doi.org/10.17308/kcmf.2023.25/11107
Vasil’eva V. I., Akberova E. M., Shaposhnik V. A., Malykhin M. D. Electrochemical properties and structure of ion-exchange membranes upon thermochemical treatment. Russian Journal of Electrochemistry. 2014;50(8): 789–797. https://doi.org/10.1134/S102319351408014X
Vasil’eva V. I., Akberova E. M., Pismenskaya N. D., Nebavskaya K. A. Effect of thermochemical treatment on the surface morphology and hydrophobicity of heterogeneous ion-exchange membranes. Russian Journal of Physical Chemistry A. 2014;88(8): 1293-1299. https://doi.org/10.1134/S0036024414080317
Volodin D. N., Magomedova N. V., Voropayev A. N. The use of electromembrane technology in wastewater treatment. Vodoochistka. Vodopodgotovka. Vodosnabzhenie. 2015;92(8): 32–36. (In Russ.). Available at: https://elibrary.ru/item.asp?id=24146800
Kozaderova O. A., Kim K. B., Niftaliev S. I. Changes of physicochemical and transport characteristics of ion exchange membranes in the process of operation under demineralization of wastewater water production of nitrogen-containing mineral fertilizers Sorbtsionnye I Khromatograficheskie Protsessy. 2018;18(6): 875–885. (in Russ.). https://doi.org/10.17308/sorpchrom.2018.18/616
Han L. Aging and degradation of ion-exchange membranes. In: Zhang Z., Zhang W., Chehimi M.M. (eds.) Membrane technology enhancement for environmental protection and sustainable industrial growth. Advances in Science, Technology & Innovation. 2021. Springer, Cham. https://doi.org/10.1007/978-3-030-41295-1_3
Shaposhnik V. A. The role of hydration in ion exchange separations. Kinetics and dynamics of metabolic processes∗. In: Fundamental problems of Separation Science: Abstracts of the VIII All-Russian Symposium with international participation, November 18–22, 2019, Moscow. Moscow: Publishing House “Frontier”; 2019. p. 34–36. (in Russ.). Available at: https://elibrary.ru/item.asp?id=44353630&selid=44353758
Safronova E. Y., Yaroslavtsev A. B., Volkov V. I., Pavlov A. A., Chernyak A. V., Volkov E. V. Hydration of the H+, Li+, Na+, and Cs+ ions in MF-4SK perfluorinated sulfonic acid cation-exchange membranes modified with enorganic dopants. Russian Journal of Inorganic Chemistry. 2011;56(2): 156–162. https://doi.org/10.1134/S0036023611020240
Zyryanova S., Mareev S., Gil V., … Dammak L. How electrical heterogeneity parameters of ion-exchange membrane surface affect the mass transfer and water splitting rate in electrodialysis. International Journal of Molecular Sciences. 2020;21(3): 973. https://doi.org/10.3390/ijms21030973
Kharina A. Yu., Eliseeva T. V. Cation-exchange membrane MK-40 characteristics in electrodialysis of mixed solutions of mineral salt and amino acid. Sorbtsionnye I Khromatograficheskie Protsessy. 2017;17(1): 148–155. (in Russ.). https://doi.org/10.17308/sorpchrom.2017.17/364
Kotova D. L., Selemenev V. F. Thermal analysis of ion-exchange matherials*. Moscow: Nauka Publ.; 2002. 157 p. (in Russ.)
Kononenko N., Nikonenko V., Grande D., … Volfkovich Yu. Porous structure of ion exchange membranes investigated by various techniques Advances in Colloid and Interface Science. 2017;246: 196–216. https://doi.org/10.1016/j.cis.2017.05.007
Sarapulova V. V., Titorova V. D., Nikonenko V. V., Pismenskaya N. D. Transport characteristics of homogeneous and heterogeneous ion-exchange membranes in sodium chloride, calcium chloride, and sodium sulfate solutions. Membranes and Membrane Technologies. 2019;1(3): 168–182. https://doi.org/10.1134/S2517751619030041
Krisilova E. V., Eliseeva T. V., Oros G. Y. Effect of amino acid sorption on formation of water clusters in ionexchange membranes. Colloid Journal. 2011;73(1): 72–75. https://doi.org/10.1134/S1061933X11010091
https://www.mega.cz/membranes/#what-we-do
Niftaliyev S. I., Kouznetsova I. V., Peregoudov Yu. S., Okshin V. V., Melnik A. V. Prospects for utilization of sewage from the “FERTILIZERS” open joint-stock company. Ecology and Industry of Russia. 2012;(5): 36–39. (In Russ.). https://doi.org/10.18412/1816-0395-2012-5-36-39
Kononenko N. A., Demina O. A., Loza N. V., Falina I. V., Shkirskaya S. A. Membrane electrochemistry*. Krasnodar: Kubanskii gosudarstvennyi universitet Publ.; 2015. 290 p. (In Russ.)
Kozaderova O. A. Electrochemical characterization of an MB-2 bipolar membrane modified by nanosized chromium(III) hydroxide. Nanotechnologies in Russia. 2018;13(9-10): 508–515. https://doi.org/10.1134/S1995078018050075
Astapov A. V., Peregudov Y. S., Kopylova V. D. The state of water in different forms of sulfo ion-exchange fiber. Russian Journal of Physical Chemistry A. 2011;85(7): 1253–1256. https://doi.org/10.1134/S0036024411070028
Yaroshenko F. A. Proton conductivity of composite materials based on polymers modified with polysuric acid*. Cand. chem. sci. diss. Chelyabinsk: 2020. 131 p. Available at: https://www.dissercat.com/content/protonnayaprovodimost-kompozitsionnykh-materialov-na-osnovepolimerov-modifitsirovannykh/read
Vainertova K., Krshivchik I., Nedela D., … Movsumzade E. M. Polymer binders for ion-exchange membranes with improved mechanical strength. Industrial Production and Use Elastomers. 2016;2: 33–42. (In Russ.). Available at: https://www.elibrary.ru/item.asp?id=26599727
Eliseeva T. V., Zyablov A. N., Kotova D. L., Selemenev V. F. Hydration of ion-exchange membranes saturated with amino acids. Russian Journal of Physical Chemistry A. 1999;73(5): 783–785. Available at: https://www.elibrary.ru/item.asp?id=13321063
Zyablov A. N. Hydration of amino acids and ionexchange membranes in amino acid forms and its effect on diffusion transport*. Cand. chem. sci. diss. Voronezh: 1999. 162 p. Available at: https://www.dissercat.com/content/gidratatsiya-aminokislot-i-ionoobmennykh-membran-vaminokislotnykh-formakh-i-ee-vliyanie-na-
Zyablov A.N., Eliseeva T.V., Kotova D.L. Thermal analysis as a method for studying the hydration of fonexchange membranes in amino acid forms*. Teoriya i praktika sorbtsionnykh protsessov. 1999;24: 57–58. (In Russ.)
Kozaderova O. A., Sinyaeva L. A., Khukharkina Y. S. Contact-difference method for measuring electrical conductivity in determination of the transport characteristics of heterogeneous ion-exchange membranes of different service life in an industrial electrodialyzer. Sorbtsionnye I Khromatograficheskie Protsessy. 2025;25(3): 316–327. (in Russ.). https://doi.org/10.17308/sorpchrom.2025.25/13043
Porozhny M. V. Electrochemical characteristics of ion-exchange membranes with organic and inorganic immobilized nanoparticles*. Cand. chem. sci. diss. Krasnodar: 2018. 112 p. (in Russ.)
Yurova P. A., Karavanova Y. A., Stenina I. A., Yaroslavtsev A. B. Synthesis and studies on the diffusion properties of MK-40 cation-exchange membranes modified with ceria. Nanotechnologies in Russia. 2016;11(11-12): 761–765. https://doi.org/10.1134/S1995078016060215
Helfferich F. G. Ionenaustauscher. Band 1: Grundlagen. Struktur - Herstellung – Theorie. Weinheim: Verlag chemie;1959.
Pismenskaya N., Sarapulova V., Nevakshenova E., Kononenko N., Fomenko M., Nikonenko V. Concentration dependencies of diffusion permeability of anion-exchange membranes in sodium hydrogen carbonate, monosodium phosphate, and potassium hydrogen tartrate solutions. Membranes. 2019;9: 170. https://doi.org/10.3390/membranes9120170
Kononenko N. A., Berezina N. P. Research methods and characterization of synthetic polymer membranes. In: Membranes and Membrane technologies*. Moscow: Nauchny Mir Publ., 2013. p. 402–455. (in Russ.)
Koga Y., Kondo T., Miyazaki Y., Inaba A. The effects of sulphate and tartrate ions on the molecular organization of water: towards understanding the hofmeister series (VI). Journal of Solution Chemistry. 2012;41: 1388–1400. https://doi.org/10.1007/s10953-012-9880-x
Copyright (c) 2025 Конденсированные среды и межфазные границы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.





