Изучение влияния микроструктуры Pt/С материалов на электрохимические характеристики полученных на их основе PtCo/С электрокатализаторов
Аннотация
Цель статьи: В работе проведено исследование влияния равномерности пространственного распределения наночастиц Pt по поверхности носителя в Pt/C материалах на микроструктуру и электрохимическое поведение получаемых на их основе PtCo/C катализаторов.
Экспериментальная часть: Для синтеза PtCo/C катализаторов используется метод пропитки Pt/C с последующей термической обработкой в атмосфере Ar/H2.
Выводы: Применение Pt/C материала с массовой долей платины около 20 % и равномерным распределением наночастиц Pt по поверхности углеродного носителя позволяет получить PtCo/C катализатор, активность которого в реакции восстановления кислорода при 0.90 В составляет 1215 А/г (Pt), что превышает аналогичный показатель для коммерческого Pt/C катализатора в 4.8 раза. При этом использование Pt/C материала с неравномерным распределением наночастиц приводит к получению PtCo/C катализатора с крупным размером частиц и низкой величиной активной площади поверхности, что значительно ухудшает его активность в реакции восстановления кислорода.
Скачивания
Литература
Peng Z, Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today. 2009;4: 143–164. https://doi.org/10.1016/j.nantod.2008.10.010
Xu G., Yang L., Li J., Liu C., Xing W., Zhu J. Strategies for improving stability of Pt-based catalysts for oxygen reduction reaction. Advanced Sensor and Energy Materials. 2023;2: 100058. https://doi.org/10.1016/j.asems.2023.100058
Xiao F., Wang Y., Wu Z., …Shao M. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Advanced Materials. 2021;33: 2006292. https://doi.org/10.1002/adma.202006292
Wu D., Shen X., Pan Y., Yao L., Peng Z. Platinum alloy catalysts for oxygen reduction reaction: advances, challenges and perspectives. ChemNanoMat. 2020;6: 32–41. https://doi.org/10.1002/cnma.201900319
Wang X. X., Swihart M. T., Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis. 2019;2: 578–589. https://doi.org/10.1038/s41929-019-0304-9
Glüsen A., Dionigi F., Paciok P., … Stolten D. Dealloyed PtNi-core–shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells. ACS Catalysis. 2019;9: 3764–3772. https://doi.org/10.1021/acscatal.8b04883
Jeyabharathi C., Hodnik N., Baldizzone C., … Mayrhofer K. J. J. Time evolution of the stability and oxygen reduction reaction activity of PtCu/C nanoparticles. Chem- CatChem. 2013;5: 2627–2635. https://doi.org/10.1002/cctc.201300287
Koh S., Strasser P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. Journal of the American Chemical Society. 2007;129: 12624–12625. https://doi.org/10.1021/ja0742784
Lopez-Haro M., Dubau L., Guétaz L., … Maillard F. Atomic-scale structure and composition of Pt3Co/C nanocrystallites during real PEMFC operation: a STEM–EELS study. Applied Catalysis B: Environmental. 2014;152–153: 300–308. https://doi.org/10.1016/j.apcatb.2014.01.034
Gan L., Heggen M., O’Malley R., Theobald B., Strasser P. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Letters. 2013;13: 1131–1138. https://doi.org/10.1021/nl304488q
Lyu X., Jia Y., Mao X., … Yao X. Gradient-concentration design of stable core-shell nanostructure for acidic oxygen reduction electrocatalysis. Advanced Materials. 2020;32: 2003493. https://doi.org/10.1002/adma.202003493
Gan L., Yu R., Luo J., Cheng Z., Zhu J. Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. The Journal of Physical Chemistry Letters. 2012;3: 934–938. https://doi.org/10.1021/jz300192b
Paperzh K. O., Alekseenko A. A., Safronenko O. A., Volochaev V. A., Pankov I. V., Guterman V. E. Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or ordering of primary importance? 2021: 593–606. https://doi.org/10.3762/bxiv.2021.27.v1
Paperzh K. O., Pavlets A. S., Alekseenko A. A., Pankov I. V., Guterman V. E. The integrated study of the morphology and the electrochemical behavior of Pt-based ORR electrocatalysts during the stress testing. International Journal of Hydrogen Energy. 2023;48: 22401–22414. https://doi.org/10.1016/j.ijhydene.2023.01.079
Paperzh K., Moguchikh E., Pankov I., Belenov S., Alekseenko A. Effect of AST atmosphere on Pt/C electrocatalyst degradation. Inorganics (Basel). 2023;11: 237. https://doi.org/10.3390/inorganics11060237
Paperzh K., Alekseenko A., Danilenko M., Pankov I., Guterman V. E. Advanced methods of controlling the morphology, activity, and durability of Pt/C electrocatalysts. ACS Applied Energy Materials. 2022;5: 9530–9541. https://doi.org/10.1021/acsaem.2c01151
Wen Y.-H., Zhang L.-H., Wang J.-B., Huang R. Atomic-scale insights into thermal stability of Pt3Co nanoparticles: a comparison between disordered alloy and ordered intermetallics. Journal of Alloys and Compounds. 2019;776: 629–635. https://doi.org/10.1016/j.jallcom.2018.10.274
Jung W. S., Popov B. N. Effect of pretreatment on durability of fct-structured Pt-based alloy catalyst for the oxygen reduction reaction under operating conditions in polymer electrolyte membrane fuel cells. ACS Sustainable Chemistry and Engineering. 2017;5: 9809–9817. https://doi.org/10.1021/acssuschemeng.7b01728
Konno N., Mizuno S., Nakaji H., Ishikawa Y. Development of compact and high-performance fuel cell stack. SAE International Journal of Alternative Powertrains. 2015;4: 2015-01–1175. https://doi.org/10.4271/2015-01-1175
Yan W., Sun P., Luo C., …. Du F. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chinese Journal of Chemical Engineering. 2023;53: 101–123. https://doi.org/10.1016/j.cjche.2022.03.024
Tong L., Fan L., Liang H.-W. Platinum intermetallic nanoparticle cathode catalysts for proton-exchange-membrane fuel cells: Synthesis and ordering effect. Current Opinion in Electrochemistry. 2023;39: 101281. https://doi.org/10.1016/j.coelec.2023.101281
Liu X., Liang J., Li Q. Design principle and synthetic approach of intermetallic Pt-M alloy oxygen reduction catalysts for fuel cells. Chinese Journal of Catalysis. 2023;45: 17–26. https://doi.org/10.1016/S1872-067(22)64165-2
Yang B., Yu X., Hou J., Xiang Z. Secondary reduction strategy synthesis of Pt–Co nanoparticle catalysts towards boosting the activity of proton exchange membrane fuel cells. Particuology. 2023;79: 18–26. https://doi.org/10.1016/j.partic.2022.11.010
Wan K., Wang J., Zhang J., …. Zhang C. Ligand carbonization in-situ derived ultrathin carbon shells enable high-temperature confinement synthesis of PtCo alloy catalysts for high-efficiency fuel cells. Chemical Engineering Journal. 2024;482: 149060. https://doi.org/10.1016/j.cej.2024.149060
Lima F. H. B., de Castro J. F. R., Santos L. G. R. A., Ticianelli E. A. Electrocatalysis of oxygen reduction on carbon-supported Pt–Co nanoparticles with low Pt content. Journal of Power Sources. 2009;190: 293–300. https://doi.org/10.1016/j.jpowsour.2008.12.128
Mai Y., XIE X, Wang Z., Yan C., Liu G. Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations. Journal of Fuel Chemistry and Technology. 2022;50: 114–121. https://doi.org/10.1016/S1872-5813(21)60099-3
Koh S., Hahn N., Yu C., Strasser P. Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle electrocatalysts for PEMFC. Journal of The Electrochemical Society. 2008;155: B1281. https://doi.org/10.1149/1.2988741
Belenov S., Mauer D., Moguchikh E…Alekseenko A. New approach to synthesizing cathode PtCo/C catalysts for low-temperature fuel cells. Nanomaterials. 2024;14: 856. https://doi.org/10.3390/nano14100856
Belenov S., Nevelskaya A., Nikulin A., Tolstunov M. The effect of pretreatment on a PtCu/C catalyst’s structure and functional characteristics. International Journal of Molecula. 2023;24: 2177. https://doi.org/10.3390/ijms24032177
Copyright (c) 2025 Конденсированные среды и межфазные границы

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.





