THE KINETICS OF THE HYDROGEN EVOLUTION REACTION ON NICKEL MONOSILICIDE IN ACIDIC AND ALKALINE SOLUTIONS

  • Vladimir I. Kichigin Dr. Sci. (Chem.), Associate Professor, Department of Physical Chemistry, Perm State University, ph.: +7(342) 2396452, e-mail: kichigin@psu.ru
  • Anatoliy B. Shein Dr. Sci. (Chem.), Professor, Head of Physical Chemistry Department, Perm State University; ph.: +7(342) 2396468, e-mail: ashein@psu.ru
  • Artem Sh. Shamsutdinov graduate student, Physical Chemistry Department, Perm State University; ph.: +7(342) 2396452
Keywords: nickel monosilicide, hydrogen evolution reaction, hydrogen absorption, impedance

Abstract

The kinetics of the hydrogen evolution reaction on nickel silicide NiSi (fabricated by Czochralski method) in solutions of 0.5M H2SO4 and 1М КОН has been studied by polarization measurements and electrochemical impedance spectroscopy. In an acid solution two Tafel slopes have been observed on the polarization curve for NiSi: the slope b is equal to 0.105 V/decade at E > -0.33 V (SHE) and b = 0.18 V/decade at E < -0.33 V. In an alkaline solution one linear region of the Tafel line has been observed, b = 0.13 V/decade. The exchange current density i0 is 4.45 x 10-6 A cm-2 and 4.2 x 10-6 A cm-2 in acidic and alkaline solution respectively. In an acidic solution the Nyquist plots consist of a single semicircle at not high cathodic polarizations and of two well-resolved capacitive arcs at higher cathodic polarizations. An equivalent circuit considering the hydrogen absorption reaction was used at high cathodic polarizations. In an alkaline solution the Nyquist plots consist of a single capacitive semicircle. The potential dependences of equivalent circuit elements R1R2C2 and time constant R2C2 have been discussed. The conclusion was made that hydrogen evolution on NiSi in a sulfuric acid solution proceeds via a two-route Volmer–Heyrovsky–Tafel mechanism (with hydrogen absorption reaction in parallel) and in an alkaline solution via the Volmer–Heyrovsky mechanism with unequal transfer coefficients for the steps. The obtained results show that the adsorbed atomic hydrogen on an NiSi electrode obeys the Langmuir isotherm in both solutions.

Downloads

Download data is not yet available.

References

1. Vvedenski A. V., Gutorov I. A., Morozova N. B. Condensed Matter and Interfaces, 2010, vol. 12, no. 3, pp. 288–300. Available at: http://www.kcmf.vsu.ru/resources/t_12_3_2010_012.pdf (in Russian)
2. Safizadeh F., Ghali E., Houlachi G. Int. J. Hydrogen Energy, 2015, vol. 40, no. 1, pp. 256–274. DOI: 10.1016/j.ijhydene.2014.10.109
3. Sapountzi F. M., Gracia J. M., Weststrate C. J., Fredriksson H. O. A., Niemantsverdriet J. W. Progress in Energy and Combustion Science, 2017, vol. 58, pp. 1–35. DOI: 10.1016/j.pecs.2016.09.001
4. Shamsul Huq A. K. M., Rosenberg A. J. J. Electrochem. Soc., 1964, vol. 111, no. 3, pp. 270–278. DOI: 10.1149/1.2426107
5. Tilak B. V., Ramamurthy A. C., Conway B. E. Proc. Indian Acad. Sci. (Chem. Sci.), 1986, vol. 97, no. 3–4, pp. 359–393. DOI: 10.1007/BF02849200
6. Vijh A. K., Bélanger G., Jacques R. Materials Chemistry and Physics, 1989, vol. 21, pp. 529–538. DOI: 10.1016/0254-0584(89)90151-X
7. Vijh A. K., Bélanger G., Jacques R. Int. J. Hydrogen Energy, 1990, vol. 15, no. 11, pp. 789–794. DOI:10.1016/0360-3199(90)90014-P
8. Vijh A. K., Bélanger G. J. Mater. Sci. Lett., 1995, vol.14, pp. 982–984. DOI: 10.1007/bf00274625
9. Povroznik V. S., Shein A. B. Protection of Metals, 2007, vol. 43, no. 2, pp. 203–207. DOI: 10.1134/S0033173207020130
10. Kichigin V. I., Shein A. B. Electrochim. Acta, 2015, vol. 164, pp. 260–266. DOI: 10.1016/j.electacta.2015.02.198
11. Kichigin V. I., Shein A. B.,Shamsutdinov A. Sh. Condensed Matter and Interfaces, 2016, vol. 18, no. 3, pp. 326–337. Available at: http://www.kcmf.vsu.ru/resources/t_18_3_2016_003.pdf (in Russian)
12. Pomoni K., Krontiras Ch. J. Phys. D: Appl. Phys., 1988, vol. 21, pp. 780–783. DOI: 10.1088/0022-3727/21/5/017
13. Valeri S., Del Pennino U., Sassaroli P. Surface Science, 1983, vol. 134, no. 3, pp. L537–L542. DOI: 10.1016/0039-6028(83)90056-0
14. Harrington D. A., Conway B. E. Electrochim. Acta, 1987, vol. 32, no. 12, pp. 1703–1712. DOI: 10.1016/0013-4686(87)80005-1
15. Lasia A. Electrochemical Impedance Spectroscopy and its Applications. Springer, New York, 2014.
16. Córdoba-Torres P., Mesquita T. J., Nogueira R. P. J. Phys. Chem. C, 2015, vol. 119, no. 8, pp. 4136–4147. DOI: 10.1021/jp512063f
17. Lim C., Pyun S.-I. Electrochim. Acta, 1993, vol. 38, no. 18, pp. 2645–2652. DOI: 10.1016/0013-4686(93)85082-A
18. Kichigin V. I., Shein A. B. Electrochim. Acta, 2014, vol. 138, pp. 325–333. DOI: 10.1016/j.electacta.2014.06.114
19. Kichigin V. I., Shein A. B. Electrochim. Acta, 2016, vol. 201, pp. 233–239. DOI: 10.1016/j.electacta.2016.03.194
20. Devanathan M. A. V., Stachurski Z. J. Electrochem. Soc., 1964, vol. 111, no. 5, pp. 619–623. DOI: 10.1149/1.2426195
21. Kichigin V. I., Sherstobitova I. N., Kuznetsov V. V. Electrochemistry, 1976, vol. 12, no. 2, pp. 315–318. (in Russian)
22. Krishtalik L. I. In: P. Delahay (Ed.), Adv. Electrochem. Electrochem. Engng. Vol.7, New York, Intersci. Publ., 1970, pp. 283–340.
Published
2017-11-07
How to Cite
Kichigin, V. I., Shein, A. B., & Shamsutdinov, A. S. (2017). THE KINETICS OF THE HYDROGEN EVOLUTION REACTION ON NICKEL MONOSILICIDE IN ACIDIC AND ALKALINE SOLUTIONS. Condensed Matter and Interphases, 19(2), 222-231. https://doi.org/10.17308/kcmf.2017.19/195
Section
Статьи