DROPLET REACTOR IN NANOTECHNOLOGY

  • D. A. Zhukalin Cand. Sci. (Phys.-Math.), Associate Professor, Department of Physics of Semiconductors and Microelectronics, Voronezh State University; ph.: +7 (951) 5685250, e-mail: d.zhukalin@mail.ru
Keywords: drying drop, nanoreactor, self-organization, nanosystem, autowave processes, dissipative structure.

Abstract

Recently, a drop is considered as a nanoreactor. The term "nanoreactor" is often understood as a reactor for chemical reactions in a small (limited) volume, the parameters of which do not exceed 100 nm in one of the measurements. However, when the droplet dries, the process of particle interaction is more complicated in comparison with a static volume. A drying droplet of colloidal suspensions is a dynamic system with constantly changing parameters: concentration, radius of curvature, surface tension. The pressure increases, which leads to the appearance of powerful turbulent flows inside the droplet, capable of bringing particles closer to the smallest distances. In this case, the parameters of interacting particles are important: proportionality, hydration, charge, presence of functional properties. Thus, in the droplet, a transition to a highly concentrated system takes place, where the factors regulating the energy parameters of mechanical influences play a decisive role in controlling properties. In other words, the level of energy density necessary to achieve and subsequently maintain a certain degree of structural failure.

Thermal autowave spatiotemporal (dissipative) structures are formed in drying droplet. This phenomenon can be regarded as fundamental. Dissipative structures are a thermodynamic characteristic of the process of self-organization and can be used to diagnose nanosystems in the production of functional materials for various purposes. At the same time, for each system the autowave process has its own set of characteristic parameters (amplitude, oscillation frequency, process duration, number of vibration modes, two-dimensional pattern) that are an indicator of the process of self-organization.

 

Downloads

Download data is not yet available.

References

1. Tret'yakov Yu. D. Uspekhi khimii [Russian Chemical Reviews], 2014, vol. 72, no. 8, p. 651. DOI: https://doi.org/10.1070/RC2003v072n08ABEH000836
2. Kushnir S. E., Kazin P. E., Trusov L. A., Tret'yakov Yu. D. Uspekhi khimii [Russian Chemical Reviews], 2012, vol. 81, no. 6, p. 560. DOI: https://doi.org/10.1070/RC2012v081n06ABEH004250
3. Lebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfimov M. V. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2013, vol. 8, no. 3-4, p. 137. DOI: 10.1134/S1995078013020110
4. Khaken G. Sinergetika: ierarkhii neustoichivostei v samoorganizuyushchikhsya sistemakh i ustroistvakh [Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices]. Moscow, Mir Publ., 1981, 420 p. (in Russ.)
5. Nikolis G. Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii [Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations]. Moscow, Mir Publ., 1979, 512 p. (in Russ.)
6. Prigozhin I. Vvedenie v termodinamiku neobratimykh protsessov [Introduction to the Thermodynamics of Irreversible Processes]. Izhevsk, NITs «Regulyarnaya i khaoticheskaya dinamika» Publ., 2001, 160 p. (in Russ.)
7. Klimontovich Yu. L. Vvedenie v fiziku otkrytykh system [Introduction to Open Systems Physics]. Moscow, Yanus-M Publ., 2002, 290 p. (in Russ.)
8. Len Zh.-M. Supramolekulyarnaya khimiya. Kontseptsii i perspektivy [Supramolecular Chemistry: Concepts and Perspectives]. Novosibirsk, Nauka Publ., 1998, 334 p. (in Russ.) DOI: 10.1002/3527607439
9. Walker D. A., Kowalczyk B., Cruz M. O. and Grzybowski B. A. Nanoscale, 2011, vol. 3, pp. 1316-1344. DOI: 10.1039/C0NR00698J
10. Ouyang Q., Castets V., Boissonade J., et al. J. Chem. Phys., 1991, vol. 95, pp. 351. DOI: 10.1063/1.461490
11. Tarasevich Yu. Yu., Pravoslavnova D. M. Zhurnal tekhnicheskoi fiziki [Technical Physics], 2007, vol. 77, no. 2. pp. 17-21. Available at: http://journals.ioffe.ru/articles/viewPDF/9047 (in Russ.)
12. Faigl' F., Anger V. Kapel'nyi analiz neorganicheskikh veshchestv [Drip Analysis of Inorganic Substances]. Moscow, Mir Publ., 1976, vol. 1, 390 p., vol. 2, 320 p. (in Russ.)
13. Yakhno T. A., Kazakov V. V., Sanina O. A., Sanin A. G., Yakhno V. G. Zhurnal tekhnicheskoi fiziki [Technical Physics], 2010, vol. 80, no. 7, pp. 17-23. Available at: http://journals.ioffe.ru/articles/viewPDF/10043 (in Russ.)
14. Alfimov M. V., Kadushnikov R. M., Shturkin N. A., Alievskii V. M., Lebedev-Stepanov P. V. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2006, vol. 1, no. 1-2, pp. 127-133. (in Russ.)
15. Lebedev-Stepanov P. V., Gromov S. P., Molchanov S. P., Chernyshov N. A., Batalov I. S., Sazonov S. K., Lobova N. A., Shevchenko N. N., Men'shikova A. Yu., Alfimov M. V. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2011, vol. 6, no. 569-578, pp. 72-78. DOI: 10.1134/S1995078011050119
16. Andreeva L. V., Novoselova A. S., Lebedev-Stepanov P. V., Ivanov D. A., Koshkin A. V., Petrov A. N., Alfimov M. V. Zhurnal tekhnicheskoi fiziki [Technical Physics], 2007, vol. 77, no. 2, pp. 22-30. Available at: http://journals.ioffe.ru/articles/viewPDF/9048 (in Russ.)
17. Geguzin Ya. E. Kaplya [Drop]. Nauchno-populyarnaya seriya AN SSSR, 2-oe dop. izd. Moscow, Nauka Publ., 1977, 161 p. (in Russ.)
18. Barash L. Yu. Diss. Can. Sci. Phys.-Math. Moscow, 2009, 74 p.
19. Barash L. Yu. International Journal of Heat and Mass Transfer, 2016, vol. 102, pp. 445-454. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.042
20. Bityutskaya L. A., Zhukalin D. A., Tuchin A. V., Frolov A. A., Buslov V. A. Condensed Matter and Interphase, 2014, vol. 16, no. 4, pp. 425-430. Available at: http://www.kcmf.vsu.ru/resources/t_16_4_2014_004.pdf (in Russ.)
21. Bunkin F. V., Kirichenko N. A., Luk'yanchuk B. S. Uspekhi fizicheskikh nauk [Sov. Phys. Usp.], 1982, vol. 25, pp. 662-687. DOI: https://doi.org/10.3367/UFNr.0138.198209b.0045 (in Russ.)
22. Molchanov S. P., Lebedev-Stepanov P. V., Klimonskii S. O., Sheberstov K. F., Tret'yakov S. Yu., Alfimov M. V. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2010, vol. 5-6. p. 299. DOI: 10.1134/S1995078010050034
23. Kurkina E. S., Kurdyumov S. P. Doklady akademii nauk, 2004, vol. 395, no. 6, pp. 743-748. (in Russ.)
24. Kurdyumov S. P. Rezhimy s obostreniem. Evolyutsiya idei [Modes of Extension: the Evolution of The Idea]. Moscow, Nauka Publ., 1998, 255 p. (in Russ.)
25. Galaktionov V. A., Vazquez J. L. J. Discrete and Contin. Dynamical Systems, 2002, vol. 8, no. 2, pp. 399-433.
26. Samarskii A. A., Galaktionov V. A., et al. Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii [Regimes with Peaking in Problems for Quasilinear Parabolic Equations]. Moscow, Nauka Publ., 1987, 480 p. (in Russ.)
27. Zmitrenko N. V., Kurdyumov S. P. JETP Letters, 1978, vol. 26, no. 9, p. 468. Available at: http://www.jetpletters.ac.ru/ps/1383/article_20963.pdf
28. Deegan R. D., et al. Phys. Rev. E., 2000, vol. 62, pp. 756-765. Available at: https://journals.aps.org/pre/pdf/10.1103/PhysRevE.62.756
29. Anderson D. M., Davis S. H. Phys. of Fluids, 1995, vol. 7, pp. 248-265. DOI: https://doi.org/10.1063/1.868623
30. Fisher D. J. Langmuir, 2002, vol. 21, no. 9, pp. 3972-3980.
31. Yakhno T. A., Yakhno V. G. Zhurnal Tekhnicheskoĭ Fiziki [Technical Physics], 2009, vol. 54, no. 8, pp. 1219–1227. DOI: https://doi.org/10.1134/S1063784209080210
32. Bityutskaya L. A., Golovinskii P. A., Zhukalin D. A., Alekseeva E. V., Avilov S. V., Lukin A. N. Condensed Matter and Interphase, 2013, vol. 15, no. 1, pp. 59-64. Available at: http://www.kcmf.vsu.ru/resources/t_15_1_2013_011.pdf (in Russ.)
33. Bin Su, Shutao Wang, Yanling Song, Lei Jiang. Nano Research, 2011, vol. 4, no. 3, pp. 266-273. DOI 10.1007/s12274-010-0078-5
34. Xuemei Zhang, Yongtao Shen, Shuai Wang, Yuanyuan Guo, Ke Deng, Chen Wang, Qingdao Zeng. Scientific Reports, 2012, vol. 2, no. 742. DOI:10.1038/srep00742
35. Tuchin A.V., Zhukalin D.A., Bityutskaya L.A., Kalashnikov A.V. Letters on materials, 2016, vol. 6 (4), pp. 333-337, DOI: 10.22226/2410-3535-2016-4-333-337
Published
2018-03-15
How to Cite
Zhukalin, D. A. (2018). DROPLET REACTOR IN NANOTECHNOLOGY. Condensed Matter and Interphases, 20(1), 66-74. https://doi.org/10.17308/kcmf.2018.20/478
Section
Статьи