Диэлектрическая релаксация и протонная проводимость полисурьмяной кислоты, допированной ионами ванадия

  • Liliya Yu. Kovalenko Челябинский государственный университет ул. Бр. Кашириных, 129, 454001 Челябинск, Российская Федерация
  • Vladimir A. Burmistrov Челябинский государственный университет ул. Бр. Кашириных, 129, 454001 Челябинск, Российская Федерация
Ключевые слова: твёрдые электролиты,, структура типа пирохлора,, соединения сурьмы,, полисурьмяная кислота,, твёрдые растворы замещения,, протонная проводимость

Аннотация

Методом импедансной спектроскопии исследованы протонпроводящие свойства полисурьмяной кислоты (ПСК), допированной ионами ванадия. Для твердых растворов состава H2Sb2–xVxO6·nH2O, кристаллизующихся в структурном типе пирохлора (пр. гр. симм. Fd3m), показано, что увеличение количества ванадия в образце приводит к росту удельной протонной проводимости, которая для крайнего твердого раствора замещения H2Sb1.52V0.48O6·nH2O составляет 66 мСм/м. Из анализа данных диэлектрической спектроскопии при температурах 218–298 К определена энергия активации проводимости, которая составила 30±2 КДж/моль. Предложен механизм протонного транспорта,         согласно которому в допированных ионами ванадия ПСК проводимость осуществляется по
системе водородных связей, образованных молекулами воды, расположенными в гексагональных каналах структуры типа пирохлора, и анионами кислорода октаэдра, формирующего каркас структуры

 

 

REFERENCES

  1. Stenina I. A., Yaroslavtsev A. B. Low- and intermediate-temperature proton-conducting electrolytes. Mater. 2017. v. 53(3), pp. 253–262. https://doi.org/10.1134/S0020168517030104
  2. Ivanchev S. S., Myakin S. V. Polymer membranesfor fuel cells: manufacture, structure, modifi cation, properties. Russian Chemical Reviews, 2010, v. 79(2), pp.101-117. https://doi.org/10.1070/RC2010v079n02ABE H004070
  3. Luo T., Abdu S., Wessling M. Selectivity of ionexchange membranes: A review. Membr. Sci., 2018,v. 555, pp. 429–454. https://doi.org/10.1016/j.memsci.2018.03.051
  4. Fomenkov A. I., Pinus Yu., Peregudov A. S., Zubavichus Ya. V., Yaroslavtsev A. B., Khokhlov A. R. Proton conductivity of poly(arylene ether ketones) with different sulfonation degrees: Improvement via incorporation of nanodisperse zirconium acid phosphate. Polymer Science Series B, 2007, v. 49(7–8), pp. 177-181. https://doi.org/10.1134/S1560090407070032
  5. Prikhno I. A., Ivanova K. A., Don G. M., Yaroslavtsev A.B. Hybrid membranes based on short side chain perfl uorinated sulfonic acid membranes (Inion) and heteropoly acid salts. Mendeleev Commun, 2018, v. 28(6), pp. 657–658. https://doi.org/10.1016/j.mencom.2018. 11.033
  6. Klestchov D., Burmistrov V., Sheinkman A., Pletnev R. Composition and structure of phases formed in the process of hydrated antimony pentoxide thermolysis. Journal of Solid State Chemistry, 1991, v. 94(2), pp. 220–226. https://doi.ors/10.1016/0022-4596(91)90186-L
  7. Yaroshenko F. A., Burmistrov V. A. Dielectric relaxation and protonic conductivity of polyantimonic crystalline acid at low temperatures. Russian Journal of Electrochemistry, 2015, v. 51(5), pp. 391–396. https://doi.org/10.1134/S1023193515050195
  8. Yaroshenko F. A., Burmistrov V. A. Proton conductivity of polyantimonic acid studied by impedance spectroscopy in the temperature range 370–480 K. Mater., 2015, v. 51(8), pp. 783–787. https://doi.org/10.1134/S0020168515080208
  9. Shchelkanova M. S., Pantyukhina M. I., Antonov B. D., Kalashnova A. V. Produce new solid electrolytes based on the Li 8–x Zr 1–xVxO6 system. Butlerov Communications, 2014, v. 38(5), pp. 96–102. URL: https://butlerov.com/stat/reports/details. asp?lang=ru&id=15798 (in Russ.)
  10. Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Kovalev I. N., Galimov D. M. Synthesis of the solid solutions H2Sb2–xVxO6·nH2O with the pyrochlore-type structure. Butlerov Communications, 2018, v. 55(8), pp. 24–30. URL: https://butlerov.com/stat/reports/ details.asp?lang=ru&id=30164 (in Russ.)
  11. Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu.A. Vliyanie otnositel’noy vlazhnosti na protonnuyu provodimost’ polisur’myanykh kislot, dopirovannykh ionami vanadiya [Effect of relative humidity on the proton conductivity of poly-antimony acids doped with vanadium ions]. “Physico-chemical processes in condensed media and interphase boundaries” (FAGRAN-2018)”, materials of the 8th All-Russian Conference with international participation, October 8–11, 2018, Voronezh, pp. 524–525. URL: https://elibrary.ru/item. asp?id=36837531. (in Russ.)
  12. Malyshkina I. A., Makhaeva E. E., Gavrilova N. D., Khokhlov A. R. Peculiarities of low-frequency dielectric dispersion in polymer networks based on poly(methacrylic acid). Polymer science. Series A, 2000, v. 42(8), pp. 325–328. URL: https://elibrary.ru/item. asp?id=13345750
  13. Kleschev D. G. Mekhanizm fazovykh prevrashcheniy pri termolize gidrata pen-taoksida v intervale 470–730 K [The mechanism of phase transformations during thermolysis of pentoxide hydrate in the range of 470–730 K]. News of the Academy of Sciences of the USSR. Inorganic materials, 1987, v. 23(7), pp. 1173 –1176. (in Russ.)
  14. Armstrong R. D., Dickinson T., Willis P. M. The A. C. impedance of powdered and sintered solid ionic conductors. Electroanalytical Chem. Interfacial Electrochem, 1974, v. 53(3), pp. 389. https://doi.org/10.1016/S0022-0728(74)80077-X
  15. Niftaliev S. I., Kozaderova O. A., Kim K. B., Matchin K. S. Research of current transfer process in the system heterogeneous ion-exchange membrane – ammonium nitrate solution. Condensed Matter and Interphases, 2016, v. 18(2), pp. 232–240. URL: http://www.kcmf.vsu.ru/resources/t_18_2_2016_007.pdf (in Russ.)
  16. Alvarez R., Guerrero F., Garcia-Belmonte G., Bisquert J. // Materials Sci. 2002, vol. 90, pp. 291. https://doi.org/10.1016/s0921-5107(02)00004-1.
  17. Solodukha A. M., Lieberman Z. A. Opredelenie dielektricheskikh parametrov keramiki na osnove dispersii kompleksnogo elektricheskogo modulya [Determination of dielectric parameters of ceramics based on the dispersion of a complex electrical module]. Vestnik VSU, Series of Physics, Mathematics, 2003, no. 2, pp. 67–71. URL: http://www.vestnik.vsu.ru/pdf/physmath/2003/02/pitanov.pdf. (in Russ.)
  18. Moti Ram, Chakrabarti S. Dielectric and modulus behavior of LiFe1/2Ni1/2VO4 ceramics. Phys. Chem. Solids, 2008, v. 69(4), pp. 905–912. https://org.org/10.1016/j.jpcs.2007.10.008
  19. Pet’Kov V. I., Sukhanov M. V., Shipilov A. S., Kurazhkovskaya V. S., Borovikova E. Y., Pinus I. Y., Yaroslavtsev A. B. Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4) x (PO4)3–x. Mater., 2014, v. 50(3), pp. 263–272. https://doi.org/10.1134/S0020168514030091
  20. Krasnov A. G., Piir I. V., Sekushin N. A., Baklanova Y. V., Denisova T. A. Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6Mx Ti2O7–d (M = In, Li). Russian Journal of Electrochemistry, 2017, v. 53(8), pp. 866-872. https://doi.org/10.1134/S1023193517080122

Скачивания

Данные скачивания пока не доступны.

Биографии авторов

Liliya Yu. Kovalenko, Челябинский государственный университет ул. Бр. Кашириных, 129, 454001 Челябинск, Российская Федерация

Коваленко Лилия Юрьевна – ассистент кафедры химии твердого тела и нанопроцессов, Челябинский государственный университет, Челябинск, Российская Федерация; e-mail: lkovalenko90@mail.ru. ORCID iD 0000-0002-9187-6934.

Vladimir A. Burmistrov, Челябинский государственный университет ул. Бр. Кашириных, 129, 454001 Челябинск, Российская Федерация

Бурмистров Владимир Александрович – д. ф-м. н., профессор, декан химического факультета,

Челябинский государственный университет, Челябинск, Российская Федерация; e-mail: burmistrov@csu.ru. ORCID iD 0000-0002-7862-6017.

Опубликован
2019-06-14
Как цитировать
Kovalenko, L. Y., & Burmistrov, V. A. (2019). Диэлектрическая релаксация и протонная проводимость полисурьмяной кислоты, допированной ионами ванадия. Конденсированные среды и межфазные границы, 21(2), 204-214. https://doi.org/10.17308/kcmf.2019.21/758
Раздел
Статьи