Адсорбционная иммобилизация ферментов на альгинатах: свойства и применение препаратов на их основе. Краткий обзор
Аннотация
Несмотря на широкое применение ферментов в различных отраслях промышленности, в первую очередь – в пищевой, кожевенной, фармацевтике, косметологии и биомедицине, их низкая стабильность и отсутствие возможности многократного использования обуславливают ограничения их использования. Иммобилизация ферментов, т.е. ограничение степеней свободы их молекул путем фиксации на каком-либо носителе, может способствовать преодолению этих ограничений. Однако взаимодействия с носителем и техника иммобилизации могут влиять на каталитическую способность энзимов. В настоящей работе мы ставим перед собой цель кратко обобщить информацию о способах иммобилизации ферментов на альгиновой кислоте и ее производных и сфокусироваться на адсорбционной иммобилизации и применении таких иммобилизованных на альгинатах ферментных препаратов. Альгиновая кислота представляет собой неразветвленный гетерогенный сополимер, состоящий из 1,4-связанных остатков β-D-маннуроновой кислоты и α-L-гулуроновой кислоты. Иммобилизация ферментов на альгинатных носителях часто приводит к улучшению их стабильности и позволяет многократно использовать биокатализаторы. Адсорбция ферментов на матрицах альгиновой кислоты и ее производных является эффективным процессом в плане выхода иммобилизации, т.е. доля адсорбированного на носителе белка часто превышает 50%. Доступность, биосовместимость, устойчивость к микробной контаминации, нетоксичность и низкая стоимость делают этот полисахарид перспективным кандидатом для использования в качестве носителя для ферментов. Кроме того, собственная биологическая активность альгиновой кислоты обеспечивает ее перспективность как компонента для создания биокатализаторов медицинского или пищевого назначения. Композиты, полученные из природного альгината путем и их комбинации с другими материалами как органическими, так и неорганическими, открывают множество новых сфер применения иммобилизованных ферментов. В работе рассмотрены возможности применения иммобилизованных на альгинате или композитах ферментов, широко используемых в пищевой промышленности. В заключительной части статьи представлены основные выводы, а также обсуждены ограничения промышленного применения альгинатных носителей и возможные способы их решения.
Скачивания
Литература
Min K., Yoo Y.J., Recent progress in nanobiocatalysis for enzyme immobilization and its application, Biotechnol. Bioproc., E; 2014. 19: 553-567. https://doi.org/10.1007/s12257-014-0173-7
Jesionowski T., Zdarta J., Krajewska B., Enzyme immobilization by adsorption: a re-view, Adsorption, 2014; 20: 801-821. https://doi.org/10.1007/s10450-014-9623-y
Garcia-Galan C., Berenguer-Murcia Á., Fernandez-Lafuente R., Rodrigues R.C., Poten-tial of Different Enzyme Immobilization Strate-gies to Improve Enzyme Performance, Adv. Synth. Catal., 2011; 353: 2885-2904. https://doi.org/10.1002/adsc.201100534
Datta S., Christena L.R., Rajaram Y.R.S, Enzyme immobilization: an overview on techniques and support materials, 2013; 3 Biotech., 3: 1-9. https://doi.org/10.1007/s13205-012-0071-7
Sorokin A.V., Goncharova S.S., Lavlin-skaya M.S., Holyavka M.G., Faizullin D.A., Zuev Y.F., Kondratyev M.S., Artyukhov V.G., Complexation of Bromelain, Ficin, and Papain with the Graft Copolymer of Carboxymethyl Cellulose Sodium Salt and N-Vinylimidazole Enhances Enzyme Proteolytic Activity, Int. J. Mol. Sci., 2023; 24: 11246. https://doi.org/10.3390/ijms241411246
Sorokin A.V., Goncharova S.S., Lavlin-skaya M.S., Holyavka M.G., Faizullin D.A., Kondratyev M.S., Kannykin S.V., Zuev Y.F., Artyukhov V.G., Carboxymethyl Cellulose-Based Polymers as Promising Matrices for Ficin Immobilization, Polymers, 2023; 15: 649. https://doi.org/10.3390/polym15030649
Holyavka M.G., Goncharova S.S., So-rokin A.V., Lavlinskaya M.S., Redko Y.A., Faizullin D.A., Baidamshina D.R., Zuev Y.F., Kondratyev M.S., Kayumov A.R., Artyukhov V.G., Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features, Poly-mers, 2022; 14: 5110. https://doi.org/10.3390/polym14235110
Olshannikova S.S., Malykhina N.V., Lavlinskaya M.S., Sorokin A.V., Yudin N.E., Vyshkvorkina Y.M., Lukin A.N., Holyavka M.G., Artyukhov V.G. Novel Immobilized Bi-ocatalysts Based on Cysteine Proteases Bound to 2-(4-Acetamido-2-sulfanilamide) Chitosan and Research on Their Structural Features, Polymers, 2022; 14; 3223. https://doi.org/10.3390/polym14153223
Sorokin A.V., Olshannikova S.S., Lavlinskaya M.S., Holyavka M.G., Faizullin D.A., Zuev Y.F., Artukhov V.G., Chitosan Graft Copolymers with N-Vinylimidazole as Promising Matrices for Immobilization of Bromelain, Ficin, and Papain, Polymers, 2022; 14: 2279. https://doi.org/10.3390/polym14112279
Malykhina N.V., Olshannikova S.S., Holyavka M.G., Sorokin A.V., Lavlinskaya M.S., Artukhov V.G., Faizullin D.A., Zuev Y.F., Preparation of Ficin Complexes with Carboxymethylchitosan and N-(2-Hydroxy)Propyl-3-Trimethylammoniumchitosan and Studies of Their Structural Features, Russ. J. Bioorg. Chem., 2022; 48(Suppl 1): S50-S60. https://doi.org/10.1134/S1068162022060176
Red’ko Y.A., Ol’shannikova S.S., Hol-yavka M.G., Lavlinskaya M.S., Sorokin A.V., Artukhov V.G., Development of a Method for Obtaining Bromelain Associates with Chitosan Micro- and Nanoparticles, Pharm. Chem. J., 2022; 56: 984-988. https://doi.org/10.1007/s11094-022-02737-5
Sorokin A.V., Olshannikova S.S., Malykhina N.V., Sakibaev F.A., Holyavka M.G., Lavlinskaya M.S., Artukhov V.G., Acyl-Modified Water-Soluble Chitosan Deriva-tives as Carriers for Adsorption Immobilization of Papain, Russ. J. Bioorg. Chem. 2022; 48: 310-320. https://doi.org/10.1134/S1068162022020212
Ol’shannikova, S.S., Red’ko, Y.A., Lavlinskaya, M.S., Sorokin A.V., Holyavka M.G., Artukhov V.G., Preparation of Papain Complexes with Chitosan Microparticles and Evaluation of Their Stability Using the Enzyme Activity Level, Pharm. Chem. J., 2022; 55: 1240-1244. https://doi.org/10.1007/s11094-022-02564-8
Makshakova O.N., Bogdanova L.R., Makarova A.O., Kusova, A.M., Ermakova, E.A., Kazantseva M.A., Zuev, Y.F., κ-Carrageenan Hydrogel as a Matrix for Thera-peutic Enzyme Immobilization, Polymers, 2022; 14: 4071. https://doi.org/10.3390/polym14194071
Bilal M., Iqbal H.M.N., Naturally-derived biopolymers: Potential platforms for enzyme immobilization, Int. J. Biol. Macro-mol., 2019; 130: 462-482. https://doi.org/10.1016/j.ijbiomac.2019.02.152
Anwar A., Qader S.A.U., Raiz A., Iqbal S., Azhar A., Calcium alginate: a support mate-rial for immobilization of proteases from newly isolated strain of Bacillus subtilis KIBGE-HAS, World Appl. Sci. J.,2009; 7(10): 1281-1286.
Zhao F., Li H., Wang X., Wu L., Hou T., Guan J., Jiang Y., Xu H., Mu X., CRGO/alginate microbeads: an enzyme immo-bilization system and its potential application for a continuous enzymatic reaction, J. Mater. Chem. B, 2015; 3: 9315-9322. https://doi.org/10.1039/C5TB01508A
Raus R.A., Wan Nawawi W.M.F., Na-saruddin R.R., Alginate and alginate compo-sites for biomedical applications, Asian J. Pharm. Sci., 2021; 16(3): 280-306. https://doi.org/10.1016/j.ajps.2020.10.001
Broderick E., Lyons H., Pembroke T., Byrne H., Murray B., Hall M., The characteri-sation of a novel, covalently modified, am-phiphilic alginate derivative, which retains gel-ling and non-toxic properties, J. Colloid Inter-face Sci., 2006; 298(1): 154-161. https://doi.org/10.1016/j.jcis.2005.12.026.
Imam H.T., Marr P.C., Marr A.C., En-zyme entrapment, biocatalyst immobilization without covalent attachment, Green Chem., 2021; 23: 4980-5005. https://doi.org/10.1039/D1GC01852C
Won K., Kim S., Kim K.-J., Park H.W., Moon S.-J., Optimization of lipase entrapment in Ca-alginate gel beads, Process Biochem., 2005; 40(6): 2149-2154. https://doi.org/10.1016/j.procbio.2004.08.014
Bhushan B., Pal A., Jain V., Improved Enzyme Catalytic Characteristics upon Glutar-aldehyde Cross-Linking of Alginate Entrapped Xylanase Isolated from Aspergillus flavus MTCC 9390, Enzyme Res., 2015; 2015: 210784. http://dx.doi.org/10.1155/2015/210784
Siva Sai Kumar R., Vishwanath K.S., Singh S.A., Rao A.G.A, Entrapment of α-amylase in alginate beads: Single step protocol for purification and thermal stabilization, Pro-cess Biochem., 2006; 41(11): 2282-2288. https://doi.org/10.1016/j.procbio.2006.05.028
Munjal N., Sawhney S.K., Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels, En-zyme Microbiol. Technol., 2002; 30(5): 613-619. https://doi.org/10.1016/S0141-0229(02)00019-4
de Oliveira R.L., Dias J.L., da Silva O.S., Porto T.S., Immobilization of pectinase from Aspergillus aculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor, Food Bioprod. Process., 2018; 109: 9-18, https://doi.org/10.1016/j.fbp.2018.02.005
Rodriguez B.B., Bolbot J.A., Tothill, I.E., Urease–glutamic dehydrogenase biosensor for screening heavy metals in water and soil samples, Anal. Bioanal. Chem., 2004; 380: 284-292. https://doi.org/10.1007/s00216-004-2704-0
Tummino M.L., Tolardo V., Malandrio M., Sadraei R., Magnacca G., Laurenti E., A Way to Close the Loop: Physicochemical and Adsorbing Properties of Soybean Hulls Recov-ered After Soybean Peroxidase Extraction, Front. Chem., 2020; 8: 763. https://doi.org/10.3389/fchem.2020.00763
Bagewadi Z.K., Mulla S.I., Ninnekar H.Z., Purification and immobilization of lac-case from Trichoderma harzianum strain HZN10 and its application in dye decoloriza-tion, J. Gen. Eng. Biotechnol., 2017; 15(1): 139-150. https://doi.org/10.1016/j.jgeb.2017.01.007
Kumar L., Kumar P., Kar M., Influence of Mn substitution on crystal structure and magnetocrystalline anisotropy of nanocrystal-line Co1−xMn x Fe2−2xMn2xO4. Appl. Nanosci., 2013; 3: 75-82. https://doi.org/10.1007/s13204-012-0071-2
Minteer S. Enzyme Stabilization and Immobilization. Methods in Molecular Biolo-gy, vol 1504. Humana Press, New York, NY., 2017, 324 p.
Tanriseven A., Doğan S., Immobilization of invertase within calcium alginate gel cap-sules, Process Biochem., 2011; 36(11): 1081-1083. https://doi.org/10.1016/S0032-9592(01)00146-7
Li J., Jiang Z., Wu H., Long L., Jiang Y., Zhang L., Improving the recycling and storage stability of enzyme by encapsulation in mesoporous CaCO3–alginate composite gel, Compos. Sci. Technol., 2009; 69(3-4): 539-544. https://doi.org/10.1016/j.compscitech.2008.11.017
Blandino A., Macı́as M., Cantero D., Glucose oxidase release from calcium alginate gel capsules, Enzyme Microbiol. Technol., 2000; 27(3-5): 19-324. https://doi.org/10.1016/S0141-0229(00)00204-0
Ruiz E., Busto M.D., Ramos-Gómez S., Palacios D., Pilar-Izquierdo M.C., Ortega N., Encapsulation of glucose oxidase in alginate hollow beads to reduce the fermentable sugars in simulated musts, Food Biosci., 2018 24: 67-72. https://doi.org/10.1016/j.fbio.2018.06.004
DeGroot A.R., Neufeld R.J., Encapsula-tion of urease in alginate beads and protection from α-chymotrypsin with chitosan mem-branes, Enzyme Microbiol. Technol., 2001; 29(6-7): 321-327. https://doi.org/10.1016/S0141-0229(01)00393-3
Tiourina O.P, Sukhorukov G.B., Multi-layer alginate/protamine microsized capsules: encapsulation of α-chymotrypsin and controlled release study, Int. J. Pharm., 2002; 242 (1-2): 155-161. https://doi.org/10.1016/S0378-5173(02)00140-0
Rahim S.N.A., Sulaiman A., Hamzah F., Hamid K.H.K., Rodhi M.N.M., Musa M., Edama N.A., Enzymes Encapsulation within Calcium Alginate-clay Beads: Characterization and Application for Cassava Slurry Saccharifi-cation, Procedia Eng., 2013; 68: 411-417. https://doi.org/10.1016/j.proeng.2013.12.200
Yadav G.D., Jadhav S.R., Synthesis of reusable lipases by immobilization on hexago-nal mesoporous silica and encapsulation in cal-cium alginate: Transesterification in non-aqueous medium, Microporous Mesoporous Mater., 2005; 86(1-3): 215-222. https://doi.org/10.1016/j.micromeso.2005.07.018
Khani Z., Jolivalt C., Cretin M., Tingry S., Innocent C., Alginate/carbon composite beads for laccase and glucose oxidase encapsu-lation: application in biofuel cell technology. Biotechnol. Lett., 2006; 28: 1779-1786. https://doi.org/10.1007/s10529-006-9160-1
Bogdanova L.R., Zelenikhin P.V., Makarova A.O., Zueva O.S., Salnikov V.V., Zuev Y.F., Ilinskaya O.N., Alginate-Based Hydrogel as Delivery System for Therapeutic Bacterial RNase, Polymers, 2022; 14: 2461. https://doi.org/10.3390/polym14122461
Guisan J., Bolivar J., López-Gallego F., Rocha-Martín J. Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY., 2020, 457 p.
Bilal M., Asgher M. Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads. Chem. Cen-tral J., 2015; 9: 47. https://doi.org/10.1186/s13065-015-0125-0
Souza C.J.F., Garcia-Rojas E.E., Favaro-Trindade C.S., Lactase (β-galactosidase) im-mobilization by complex formation: Impact of biopolymers on enzyme activity, Food Hydro-colloids, 2018; 83: 88-96. https://doi.org/10.1016/j.foodhyd.2018.04.044
Li J., Ma J., Chen S., Huang Y., He J., Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property, Material. Sci. Eng. C, 2018; 89: 25-32. https://doi.org/10.1016/j.msec.2018.03.023
Kurayama F., Bahadur N.M., Furusawa T., Sato M., Suzuki N., Facile preparation of aminosilane-alginate hybrid beads for enzyme immobilization: Kinetics and equilibrium stud-ies, Int. J. Biol. Macromol., 2020; 150: 1203-1212. https://doi.org/10.1016/j.ijbiomac.2019.10.130
Jana A., Halder S.K., Ghosh K., Paul T., Vagvolgyi C., Mondal K.C., Mohapatra P.K.D., Tannase Immobilization by Chitin-Alginate Based Adsorption-Entrapment Tech-nique and Its Exploitation in Fruit Juice Clarifi-cation, Food. Bioprocess. Technol., 2015; 8: 2319–2329. https://doi.org/10.1007/s11947-015-1586-9
Ramirez H.L., Briones A.I., Úbeda J., Arevalo M., Immobilization of pectinase by adsorption on an alginate-coated chitin support, Biotecnol. Apl. 2013; 30(2): 101-104.
Qi D., Gao M., Li X., Lin J., Immobili-zation of Pectinase onto Porous Hydroxyap-atite/Calcium Alginate Composite Beads for Improved Performance of Recycle, ACS Ome-ga, 2020; 5(32): 20062–20069. https://doi.org/10.1021/acsomega.0c01625
Jana S., Alginate Biomaterial. Springer, Singapore, 2023, 425 p.
Bilal M., Rasheed T., Iqbal H.M.N., Hu H., Wang W., Zhang X., Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential, Int. J. Biol. Mac-romol., 2017; 105: 328–335. https://doi.org/10.1016/j.ijbiomac.2017.07.042
Dai X.-Y., Kong L.-M., Wang X.-L., Zhu Q., Chen K., Zhou T., Preparation, charac-terization and catalytic behavior of pectinase covalently immobilized onto sodium algi-nate/graphene oxide composite beads, Food Chem., 2018; 253: 185-193. https://doi.org/10.1016/j.foodchem.2018.01.157
Bedade D.K., Sutar Y.B., Singhal R.S., Chitosan coated calcium alginate beads for co-valent immobilization of acrylamidase: Process parameters and removal of acrylamide from coffee, Food Chem., 2019; 275, 2019: 95-104. https://doi.org/10.1016/j.foodchem.2018.09.090
Quiroga E., Illanes C.O., Ochoa N.A., Barberis S., Performance improvement of araujiain, a cystein phytoprotease, by immobi-lization within calcium alginate beads, Process Biochem., 2011; 6(4): 1029-1034. https://doi.org/10.1016/j.procbio.2011.01.012
Keerti, Gupta A., Kumar V., Dubey A., Verma A.K., Kinetic Characterization and Ef-fect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugar-cane Juice, Int. J. Schol. Not., 2014; 2014: 178498. https://doi.org/10.1155/2014/178498
Mushollaeni W., Supartini N., Rusdiana E., Toxicity Test of Alginate from Sargassum and Padina on the Liver of Mice, Food Public Health, 2014; 4(4): 204-208. https://doi.org/10.5923/j.fph.20140404.05
Makarova A.O., Derkach S.R., Khair T., Kazantseva M.A., Zuev Y.F., Zueva, O.S., Ion-Induced Polysaccharide Gelation: Peculi-arities of Alginate Egg-Box Association with Different Divalent Cations, Polymers, 2023; 15: 1243. https://doi.org/10.3390/polym15051243
Zueva O.S., Khair T., Derkach S.R., Kazantseva M.A., Zuev Y.F., Strontium-Induced Gelation of Sodium Alginate in the Presence of Carbon Nanotubes: Elemental Analysis and Gel Structure. J. Compos. Sci., 2023; 7: 286. https://doi.org/10.3390/jcs7070286
Yang C.-H., Yen C.-C., Jheng J.-J., Wang C.-Y., Chen S.-S., Huang P.-Y., Huang K.-S. Shaw J.-F., Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) and Candida rugosa Lipase (CRL) in Magnetic Alginate Beads: An Enzymatic Evaluation in the Corresponding Proteins. Molecules, 2014; 19: 11800-11815. https://doi.org/10.3390/molecules190811800
Kumar A., Bilal M., Ferreira L.F.R., Kumaru M., Microbial Biomolecules: Emerg-ing Approach in Agriculture, Pharmaceuticals, and Environmental Management, Academic Press, Chennai, India, 2023, 540 p.
Chaudhari S.A., Kar J.R., Singhal R.S., Immobilization of proteins in alginate: func-tional properties and applications, Curr. Org. Chem., 2015; 19(17): 1732–1754. https://doi.org/10.2174/1385272819666150429232110
Tielen P., Kuhn H., Rosenu F., Jaeger K.-E., H.-C. Flemming, Wingender J., Interac-tion between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeru-ginosa, BMC Microbiol., 2013; 13(1): 1-12. https://doi.org/10.1186/1471-2180-13-159