Adsorption immobilization of enzymes on alginates: properties and use of drugs based on them. Short review

  • Maria S. Lavlinskaya Voronezh State University, Voronezh, Sevastopol State University, Sevastopol
  • Andrey V. Sorokin Voronezh State University, Voronezh Sevastopol State University, Sevastopol
  • Yuriy F. Zuev Kazan Institute of Biochemistry and Biophysics, Federal Research Centre of the Russian Academy of Sci-ences, Kazan
  • Marina G. Holyavka Voronezh State University, Voronezh, Sevastopol State University, Sevastopol
  • Valery G. Artyukhov Voronezh State University, Voronezh
Keywords: alginic acid, enzyme immobilization, immobilization carriers.

Abstract

Despite the widespread use of enzymes in various industries, primarily in food industry, leather, pharmaceuticals, cosmetology and biomedicine, their low stability and lack of reusability limit their use. Immobilization of enzymes, i.e. limitation of the degrees of freedom of their molecules by fixing them on some carrier can help overcome these limitations. However, interactions with the support and immobilization technique can affect the catalytic ability of enzymes. In this study, we briefly summarized the information on methods for immobilizing enzymes on alginic acid and its derivatives and focused on adsorption immobilization and the use of such enzyme preparations immobilized on alginates. Alginic acid is an unbranched heterogeneous copolymer consisting of 1,4-linked β-D-mannuronic acid and α-L-guluronic acid residues. Immobilization of enzymes on alginates often improves their stability and allows the reuse of biocatalysts. The adsorption of enzymes on alginic acid matrices and its derivatives is an effective process in terms of immobilization yield, i.e. the proportion of protein adsorbed on the carrier often exceeds 50%. Availability, biocompatibility, resistance to microbial contamination, non-toxicity and low cost make this polysaccharide a promising candidate for use as an enzyme carrier. In addition, the intrinsic biological activity of alginic acid makes it promising as a component for the creation of biocatalysts for medical or food purposes. Composites obtained from natural alginate by and their combination with other materials, both organic and inorganic, open up many new applications for immobilized enzymes. The study examines the possibilities of using enzymes immobilized on alginate or composites, widely used in the food industry. The final part of the article presents the main conclusions and also discusses the limitations of the industrial application of alginate carriers and possible ways to solve them.

Downloads

Download data is not yet available.

Author Biographies

Maria S. Lavlinskaya, Voronezh State University, Voronezh, Sevastopol State University, Sevastopol

PhD (Chem), Senior Researcher, Department of Biophysics and Biotechnology, Voronezh State University, Voronezh; Senior Researcher of Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University, Sevastopol, Russia, e-mail: maria.lavlinskaya@gmail.com 

Andrey V. Sorokin, Voronezh State University, Voronezh Sevastopol State University, Sevastopol

Junior Researcher, Department of Biophysics and Biotechnology, Voronezh State University, Voronezh; Junior Researcher of Bioresource Potential of the Seaside Territory Laboratory, Sevastopol State University, Sevastopol, Russia, e-mail: andrew.v.sorokin@gmail.com

Yuriy F. Zuev, Kazan Institute of Biochemistry and Biophysics, Federal Research Centre of the Russian Academy of Sci-ences, Kazan

Doctor of Science (Chem), professor, Head of The Laboratory of Biophysical Chemistry of Nanosystems, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of RAS, Kazan, Russia, e-mail: yufzuev@mail.ru

Marina G. Holyavka, Voronezh State University, Voronezh, Sevastopol State University, Sevastopol

Doctor of Science (Biol), professor, Department of Biophysics and Biotechnology, Voronezh State University, Voronezh, professor of Physics Department, Sevastopol State University, Sevastopol, Russia, e-mail: holyavka@rambler.ru

Valery G. Artyukhov, Voronezh State University, Voronezh

Doctor of Science (Biol), professor, Head of the Biophysics and Biotechnology Department, Voronezh State University, Voronezh, Russia, e-mail: artyukhov@bio.vsu.ru

References

Min K., Yoo Y.J., Recent progress in nanobiocatalysis for enzyme immobilization and its application, Biotechnol. Bioproc., E; 2014. 19: 553-567. https://doi.org/10.1007/s12257-014-0173-7

Jesionowski T., Zdarta J., Krajewska B., Enzyme immobilization by adsorption: a re-view, Adsorption, 2014; 20: 801-821. https://doi.org/10.1007/s10450-014-9623-y

Garcia-Galan C., Berenguer-Murcia Á., Fernandez-Lafuente R., Rodrigues R.C., Poten-tial of Different Enzyme Immobilization Strate-gies to Improve Enzyme Performance, Adv. Synth. Catal., 2011; 353: 2885-2904. https://doi.org/10.1002/adsc.201100534

Datta S., Christena L.R., Rajaram Y.R.S, Enzyme immobilization: an overview on techniques and support materials, 2013; 3 Biotech., 3: 1-9. https://doi.org/10.1007/s13205-012-0071-7

Sorokin A.V., Goncharova S.S., Lavlin-skaya M.S., Holyavka M.G., Faizullin D.A., Zuev Y.F., Kondratyev M.S., Artyukhov V.G., Complexation of Bromelain, Ficin, and Papain with the Graft Copolymer of Carboxymethyl Cellulose Sodium Salt and N-Vinylimidazole Enhances Enzyme Proteolytic Activity, Int. J. Mol. Sci., 2023; 24: 11246. https://doi.org/10.3390/ijms241411246

Sorokin A.V., Goncharova S.S., Lavlin-skaya M.S., Holyavka M.G., Faizullin D.A., Kondratyev M.S., Kannykin S.V., Zuev Y.F., Artyukhov V.G., Carboxymethyl Cellulose-Based Polymers as Promising Matrices for Ficin Immobilization, Polymers, 2023; 15: 649. https://doi.org/10.3390/polym15030649

Holyavka M.G., Goncharova S.S., So-rokin A.V., Lavlinskaya M.S., Redko Y.A., Faizullin D.A., Baidamshina D.R., Zuev Y.F., Kondratyev M.S., Kayumov A.R., Artyukhov V.G., Novel Biocatalysts Based on Bromelain Immobilized on Functionalized Chitosans and Research on Their Structural Features, Poly-mers, 2022; 14: 5110. https://doi.org/10.3390/polym14235110

Olshannikova S.S., Malykhina N.V., Lavlinskaya M.S., Sorokin A.V., Yudin N.E., Vyshkvorkina Y.M., Lukin A.N., Holyavka M.G., Artyukhov V.G. Novel Immobilized Bi-ocatalysts Based on Cysteine Proteases Bound to 2-(4-Acetamido-2-sulfanilamide) Chitosan and Research on Their Structural Features, Polymers, 2022; 14; 3223. https://doi.org/10.3390/polym14153223

Sorokin A.V., Olshannikova S.S., Lavlinskaya M.S., Holyavka M.G., Faizullin D.A., Zuev Y.F., Artukhov V.G., Chitosan Graft Copolymers with N-Vinylimidazole as Promising Matrices for Immobilization of Bromelain, Ficin, and Papain, Polymers, 2022; 14: 2279. https://doi.org/10.3390/polym14112279

Malykhina N.V., Olshannikova S.S., Holyavka M.G., Sorokin A.V., Lavlinskaya M.S., Artukhov V.G., Faizullin D.A., Zuev Y.F., Preparation of Ficin Complexes with Carboxymethylchitosan and N-(2-Hydroxy)Propyl-3-Trimethylammoniumchitosan and Studies of Their Structural Features, Russ. J. Bioorg. Chem., 2022; 48(Suppl 1): S50-S60. https://doi.org/10.1134/S1068162022060176

Red’ko Y.A., Ol’shannikova S.S., Hol-yavka M.G., Lavlinskaya M.S., Sorokin A.V., Artukhov V.G., Development of a Method for Obtaining Bromelain Associates with Chitosan Micro- and Nanoparticles, Pharm. Chem. J., 2022; 56: 984-988. https://doi.org/10.1007/s11094-022-02737-5

Sorokin A.V., Olshannikova S.S., Malykhina N.V., Sakibaev F.A., Holyavka M.G., Lavlinskaya M.S., Artukhov V.G., Acyl-Modified Water-Soluble Chitosan Deriva-tives as Carriers for Adsorption Immobilization of Papain, Russ. J. Bioorg. Chem. 2022; 48: 310-320. https://doi.org/10.1134/S1068162022020212

Ol’shannikova, S.S., Red’ko, Y.A., Lavlinskaya, M.S., Sorokin A.V., Holyavka M.G., Artukhov V.G., Preparation of Papain Complexes with Chitosan Microparticles and Evaluation of Their Stability Using the Enzyme Activity Level, Pharm. Chem. J., 2022; 55: 1240-1244. https://doi.org/10.1007/s11094-022-02564-8

Makshakova O.N., Bogdanova L.R., Makarova A.O., Kusova, A.M., Ermakova, E.A., Kazantseva M.A., Zuev, Y.F., κ-Carrageenan Hydrogel as a Matrix for Thera-peutic Enzyme Immobilization, Polymers, 2022; 14: 4071. https://doi.org/10.3390/polym14194071

Bilal M., Iqbal H.M.N., Naturally-derived biopolymers: Potential platforms for enzyme immobilization, Int. J. Biol. Macro-mol., 2019; 130: 462-482. https://doi.org/10.1016/j.ijbiomac.2019.02.152

Anwar A., Qader S.A.U., Raiz A., Iqbal S., Azhar A., Calcium alginate: a support mate-rial for immobilization of proteases from newly isolated strain of Bacillus subtilis KIBGE-HAS, World Appl. Sci. J.,2009; 7(10): 1281-1286.

Zhao F., Li H., Wang X., Wu L., Hou T., Guan J., Jiang Y., Xu H., Mu X., CRGO/alginate microbeads: an enzyme immo-bilization system and its potential application for a continuous enzymatic reaction, J. Mater. Chem. B, 2015; 3: 9315-9322. https://doi.org/10.1039/C5TB01508A

Raus R.A., Wan Nawawi W.M.F., Na-saruddin R.R., Alginate and alginate compo-sites for biomedical applications, Asian J. Pharm. Sci., 2021; 16(3): 280-306. https://doi.org/10.1016/j.ajps.2020.10.001

Broderick E., Lyons H., Pembroke T., Byrne H., Murray B., Hall M., The characteri-sation of a novel, covalently modified, am-phiphilic alginate derivative, which retains gel-ling and non-toxic properties, J. Colloid Inter-face Sci., 2006; 298(1): 154-161. https://doi.org/10.1016/j.jcis.2005.12.026.

Imam H.T., Marr P.C., Marr A.C., En-zyme entrapment, biocatalyst immobilization without covalent attachment, Green Chem., 2021; 23: 4980-5005. https://doi.org/10.1039/D1GC01852C

Won K., Kim S., Kim K.-J., Park H.W., Moon S.-J., Optimization of lipase entrapment in Ca-alginate gel beads, Process Biochem., 2005; 40(6): 2149-2154. https://doi.org/10.1016/j.procbio.2004.08.014

Bhushan B., Pal A., Jain V., Improved Enzyme Catalytic Characteristics upon Glutar-aldehyde Cross-Linking of Alginate Entrapped Xylanase Isolated from Aspergillus flavus MTCC 9390, Enzyme Res., 2015; 2015: 210784. http://dx.doi.org/10.1155/2015/210784

Siva Sai Kumar R., Vishwanath K.S., Singh S.A., Rao A.G.A, Entrapment of α-amylase in alginate beads: Single step protocol for purification and thermal stabilization, Pro-cess Biochem., 2006; 41(11): 2282-2288. https://doi.org/10.1016/j.procbio.2006.05.028

Munjal N., Sawhney S.K., Stability and properties of mushroom tyrosinase entrapped in alginate, polyacrylamide and gelatin gels, En-zyme Microbiol. Technol., 2002; 30(5): 613-619. https://doi.org/10.1016/S0141-0229(02)00019-4

de Oliveira R.L., Dias J.L., da Silva O.S., Porto T.S., Immobilization of pectinase from Aspergillus aculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor, Food Bioprod. Process., 2018; 109: 9-18, https://doi.org/10.1016/j.fbp.2018.02.005

Rodriguez B.B., Bolbot J.A., Tothill, I.E., Urease–glutamic dehydrogenase biosensor for screening heavy metals in water and soil samples, Anal. Bioanal. Chem., 2004; 380: 284-292. https://doi.org/10.1007/s00216-004-2704-0

Tummino M.L., Tolardo V., Malandrio M., Sadraei R., Magnacca G., Laurenti E., A Way to Close the Loop: Physicochemical and Adsorbing Properties of Soybean Hulls Recov-ered After Soybean Peroxidase Extraction, Front. Chem., 2020; 8: 763. https://doi.org/10.3389/fchem.2020.00763

Bagewadi Z.K., Mulla S.I., Ninnekar H.Z., Purification and immobilization of lac-case from Trichoderma harzianum strain HZN10 and its application in dye decoloriza-tion, J. Gen. Eng. Biotechnol., 2017; 15(1): 139-150. https://doi.org/10.1016/j.jgeb.2017.01.007

Kumar L., Kumar P., Kar M., Influence of Mn substitution on crystal structure and magnetocrystalline anisotropy of nanocrystal-line Co1−xMn x Fe2−2xMn2xO4. Appl. Nanosci., 2013; 3: 75-82. https://doi.org/10.1007/s13204-012-0071-2

Minteer S. Enzyme Stabilization and Immobilization. Methods in Molecular Biolo-gy, vol 1504. Humana Press, New York, NY., 2017, 324 p.

Tanriseven A., Doğan S., Immobilization of invertase within calcium alginate gel cap-sules, Process Biochem., 2011; 36(11): 1081-1083. https://doi.org/10.1016/S0032-9592(01)00146-7

Li J., Jiang Z., Wu H., Long L., Jiang Y., Zhang L., Improving the recycling and storage stability of enzyme by encapsulation in mesoporous CaCO3–alginate composite gel, Compos. Sci. Technol., 2009; 69(3-4): 539-544. https://doi.org/10.1016/j.compscitech.2008.11.017

Blandino A., Macı́as M., Cantero D., Glucose oxidase release from calcium alginate gel capsules, Enzyme Microbiol. Technol., 2000; 27(3-5): 19-324. https://doi.org/10.1016/S0141-0229(00)00204-0

Ruiz E., Busto M.D., Ramos-Gómez S., Palacios D., Pilar-Izquierdo M.C., Ortega N., Encapsulation of glucose oxidase in alginate hollow beads to reduce the fermentable sugars in simulated musts, Food Biosci., 2018 24: 67-72. https://doi.org/10.1016/j.fbio.2018.06.004

DeGroot A.R., Neufeld R.J., Encapsula-tion of urease in alginate beads and protection from α-chymotrypsin with chitosan mem-branes, Enzyme Microbiol. Technol., 2001; 29(6-7): 321-327. https://doi.org/10.1016/S0141-0229(01)00393-3

Tiourina O.P, Sukhorukov G.B., Multi-layer alginate/protamine microsized capsules: encapsulation of α-chymotrypsin and controlled release study, Int. J. Pharm., 2002; 242 (1-2): 155-161. https://doi.org/10.1016/S0378-5173(02)00140-0

Rahim S.N.A., Sulaiman A., Hamzah F., Hamid K.H.K., Rodhi M.N.M., Musa M., Edama N.A., Enzymes Encapsulation within Calcium Alginate-clay Beads: Characterization and Application for Cassava Slurry Saccharifi-cation, Procedia Eng., 2013; 68: 411-417. https://doi.org/10.1016/j.proeng.2013.12.200

Yadav G.D., Jadhav S.R., Synthesis of reusable lipases by immobilization on hexago-nal mesoporous silica and encapsulation in cal-cium alginate: Transesterification in non-aqueous medium, Microporous Mesoporous Mater., 2005; 86(1-3): 215-222. https://doi.org/10.1016/j.micromeso.2005.07.018

Khani Z., Jolivalt C., Cretin M., Tingry S., Innocent C., Alginate/carbon composite beads for laccase and glucose oxidase encapsu-lation: application in biofuel cell technology. Biotechnol. Lett., 2006; 28: 1779-1786. https://doi.org/10.1007/s10529-006-9160-1

Bogdanova L.R., Zelenikhin P.V., Makarova A.O., Zueva O.S., Salnikov V.V., Zuev Y.F., Ilinskaya O.N., Alginate-Based Hydrogel as Delivery System for Therapeutic Bacterial RNase, Polymers, 2022; 14: 2461. https://doi.org/10.3390/polym14122461

Guisan J., Bolivar J., López-Gallego F., Rocha-Martín J. Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY., 2020, 457 p.

Bilal M., Asgher M. Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads. Chem. Cen-tral J., 2015; 9: 47. https://doi.org/10.1186/s13065-015-0125-0

Souza C.J.F., Garcia-Rojas E.E., Favaro-Trindade C.S., Lactase (β-galactosidase) im-mobilization by complex formation: Impact of biopolymers on enzyme activity, Food Hydro-colloids, 2018; 83: 88-96. https://doi.org/10.1016/j.foodhyd.2018.04.044

Li J., Ma J., Chen S., Huang Y., He J., Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property, Material. Sci. Eng. C, 2018; 89: 25-32. https://doi.org/10.1016/j.msec.2018.03.023

Kurayama F., Bahadur N.M., Furusawa T., Sato M., Suzuki N., Facile preparation of aminosilane-alginate hybrid beads for enzyme immobilization: Kinetics and equilibrium stud-ies, Int. J. Biol. Macromol., 2020; 150: 1203-1212. https://doi.org/10.1016/j.ijbiomac.2019.10.130

Jana A., Halder S.K., Ghosh K., Paul T., Vagvolgyi C., Mondal K.C., Mohapatra P.K.D., Tannase Immobilization by Chitin-Alginate Based Adsorption-Entrapment Tech-nique and Its Exploitation in Fruit Juice Clarifi-cation, Food. Bioprocess. Technol., 2015; 8: 2319–2329. https://doi.org/10.1007/s11947-015-1586-9

Ramirez H.L., Briones A.I., Úbeda J., Arevalo M., Immobilization of pectinase by adsorption on an alginate-coated chitin support, Biotecnol. Apl. 2013; 30(2): 101-104.

Qi D., Gao M., Li X., Lin J., Immobili-zation of Pectinase onto Porous Hydroxyap-atite/Calcium Alginate Composite Beads for Improved Performance of Recycle, ACS Ome-ga, 2020; 5(32): 20062–20069. https://doi.org/10.1021/acsomega.0c01625

Jana S., Alginate Biomaterial. Springer, Singapore, 2023, 425 p.

Bilal M., Rasheed T., Iqbal H.M.N., Hu H., Wang W., Zhang X., Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential, Int. J. Biol. Mac-romol., 2017; 105: 328–335. https://doi.org/10.1016/j.ijbiomac.2017.07.042

Dai X.-Y., Kong L.-M., Wang X.-L., Zhu Q., Chen K., Zhou T., Preparation, charac-terization and catalytic behavior of pectinase covalently immobilized onto sodium algi-nate/graphene oxide composite beads, Food Chem., 2018; 253: 185-193. https://doi.org/10.1016/j.foodchem.2018.01.157

Bedade D.K., Sutar Y.B., Singhal R.S., Chitosan coated calcium alginate beads for co-valent immobilization of acrylamidase: Process parameters and removal of acrylamide from coffee, Food Chem., 2019; 275, 2019: 95-104. https://doi.org/10.1016/j.foodchem.2018.09.090

Quiroga E., Illanes C.O., Ochoa N.A., Barberis S., Performance improvement of araujiain, a cystein phytoprotease, by immobi-lization within calcium alginate beads, Process Biochem., 2011; 6(4): 1029-1034. https://doi.org/10.1016/j.procbio.2011.01.012

Keerti, Gupta A., Kumar V., Dubey A., Verma A.K., Kinetic Characterization and Ef-fect of Immobilized Thermostable β-Glucosidase in Alginate Gel Beads on Sugar-cane Juice, Int. J. Schol. Not., 2014; 2014: 178498. https://doi.org/10.1155/2014/178498

Mushollaeni W., Supartini N., Rusdiana E., Toxicity Test of Alginate from Sargassum and Padina on the Liver of Mice, Food Public Health, 2014; 4(4): 204-208. https://doi.org/10.5923/j.fph.20140404.05

Makarova A.O., Derkach S.R., Khair T., Kazantseva M.A., Zuev Y.F., Zueva, O.S., Ion-Induced Polysaccharide Gelation: Peculi-arities of Alginate Egg-Box Association with Different Divalent Cations, Polymers, 2023; 15: 1243. https://doi.org/10.3390/polym15051243

Zueva O.S., Khair T., Derkach S.R., Kazantseva M.A., Zuev Y.F., Strontium-Induced Gelation of Sodium Alginate in the Presence of Carbon Nanotubes: Elemental Analysis and Gel Structure. J. Compos. Sci., 2023; 7: 286. https://doi.org/10.3390/jcs7070286

Yang C.-H., Yen C.-C., Jheng J.-J., Wang C.-Y., Chen S.-S., Huang P.-Y., Huang K.-S. Shaw J.-F., Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) and Candida rugosa Lipase (CRL) in Magnetic Alginate Beads: An Enzymatic Evaluation in the Corresponding Proteins. Molecules, 2014; 19: 11800-11815. https://doi.org/10.3390/molecules190811800

Kumar A., Bilal M., Ferreira L.F.R., Kumaru M., Microbial Biomolecules: Emerg-ing Approach in Agriculture, Pharmaceuticals, and Environmental Management, Academic Press, Chennai, India, 2023, 540 p.

Chaudhari S.A., Kar J.R., Singhal R.S., Immobilization of proteins in alginate: func-tional properties and applications, Curr. Org. Chem., 2015; 19(17): 1732–1754. https://doi.org/10.2174/1385272819666150429232110

Tielen P., Kuhn H., Rosenu F., Jaeger K.-E., H.-C. Flemming, Wingender J., Interac-tion between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeru-ginosa, BMC Microbiol., 2013; 13(1): 1-12. https://doi.org/10.1186/1471-2180-13-159

Published
2023-12-27
How to Cite
Lavlinskaya, M. S., Sorokin, A. V., Zuev, Y. F., Holyavka, M. G., & Artyukhov, V. G. (2023). Adsorption immobilization of enzymes on alginates: properties and use of drugs based on them. Short review. Sorbtsionnye I Khromatograficheskie Protsessy, 23(5), 924-937. https://doi.org/10.17308/sorpchrom.2023.23/11727