Изучение различных методологических подходов к извлечению жирнокислотной фракции из сложной биологической матрицы и идентификация её состава с помощью хромато-масс-спектрометрии
Аннотация
Проведено изучение жирнокислотного состава биологической матрицы, полученной на основе экстракции липидов из двустворчатого моллюска Polititapes aureus (Gmelin, 1791), широко распространенного в Чёрном море, в том числе на севастопольском его побережье. Экстракция липидной фракцией проводилась двумя методами: методом Фолча и методом Блая-Дайера. Пробоподготовка к проведению хромато-масс-спектрометрического исследования образцов в обоих случаях была одинаковая и максимально щадящая в плане длительности температурного режима и агрессивности химических реагентов с целью максимального сохранения нативной структуры выделенного из тканей моллюска жирнокислотного экстракта. В результате проведения анализа в тканях P. aurea всего было выявлено 14 насыщенных жирных кислот, в том числе: 12-Me-13:0, 12-Me-14:0, 14-Me-16:0 и 20-Me-21:0, 5 МНЖК и 9 ПНЖК. Из этих кислот было идентифицировано четыре омега-3, четыре омега-6 и четыре омега-9 кислоты. Наиболее ценными ПНЖК являются: 18:4n-3,6,9,12, 18:2n-6,9, 20:4n-6,9,11,14, 20:5n-3,6,9,12,15 и 22:6n-3,6,9,12,15,18. Также был обнаружен ряд стеринов. Результаты показали, что метод Фолча даёт большее извлечение веществ липидной природы, чем метод Блая-Дайера, что может быть объяснено большим химическим сродством получаемого методом Фолча экстрагента по отношению к нативным липидам изучаемого моллюска.
Скачивания
Литература
Rozentsvet O.A., Fedoseeva E.V., Terekhova V.A. Lipidnye biomarkery v ehkologicheskoy otsenke pochvennoy bio-ty: analiz zhirnykh kislot. Biology Bulletin Reviews. 2019; 139(2): 161-177. http://doi.org/10.1134/S0042132419020078
Zhukova N.V. Diss. dokt. biol. nauk. Vladivostok. 2009. 267 p. (In Russ.)
Bakhmet I.N., Fokina N.N., Ruoko-lainen T.R. Changes of Heart Rate and Li-pid Composition in Mytilus Edulis and Modiolus Modiolus Caused by crude oil pollution and low salinity effects. Journal of Xenobiotics. 2021; 11(2): 46-60. http://doi.org/10.3390/jox11020004
Fokina N.N., Ruokolainen T.R., Nemova N.N., Martynova D.M., Sukhotin A.A. Fatty acids distribution in seston, tis-sues, and faecal pellets of blue mussels Mytilusedulis L. Doklady Biochemistry and Biophysics. 2020; 495(1): 311-318. http://doi.org/10.1134/S1607672920060046
Fokina N.N., Ruokolainen T.R., Bakhmet I.N., Nemova N.N. Role of lipids in adaptation of mussels Mytilus edulis L. of the White Sea to rapid changes in tem-perature. Doklady Biochemistry and Bio-physics. 2014; 457: 155-157. http://doi.org/10.1134/S1607672914040103
Tanrıverdi R., Gökoğlu M., Korun J., Raziye Y.T. A preliminary study on the traits of Chamelea gallina (Linnaeus, 1758) in the Gulf of Antalya, Mediterranean Coast of Turkey (Levantine Sea). Acta Aquatica: Aquatic Sciences Journal. 2019; 6(2): 103-108. http://doi.org/10.29103/aa.v6i1.1551
Borodina A.V. Zadorozhny P.A. Distinctive variations in carotenoid accu-mulation in tissues of the clam Polititapes aureus (Gmelin, 1791) from the Black Sea. Russian Journal of Marine Biology. 2022; 48(5): 393-397. http://doi.org/10.1134/S1063074022050145
Folch J., Lees M., Sloane Stanley C.H. A simple method for the isolation and purification of total lipids from animal tis-sue. Journal of Biological Chemistry. 1957; 226(1): 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purifi-cation. Can J. Biochem Physiol. 1959;37(8):911-917. https://doi.org/10.1139/o59-099
Iverson S.J., Lang S.L.C., Cooper M.H. Comparison of the Bligh and Dyer and Folch methods for total lipid determi-nation in a broad range of marine tissue. Lipids. 2001; 36(11):1283-1287 https://doi.org/10.1007/s11745-001-0843-0
Vostrikova N.L., Kuznetsova O.A., Kulikovsky A.V. Methodological aspects of lipid extraction from biological matri-ces. Theory and practice of meat pro-cessing. 2018; 3 (2): 4-21. https://doi.org/10.21323/2414-438X‑2018-3-2-4-21
Aripovsky A.V., Kolesnik P.O., Ku-lagina T.P., Titov V.N. Podgotovka prob dlya gazohromatograficheskogo opredele-niya zhirnyh kislot: preimushchestva bez-ekstrakcionnogo metoda s pryamoj pereet-erifikaciej lipidov vysushennyh biolog-icheskih prob. Klinichescheskaya Laboratornaya Diagnostika. 2018; 63 (3): 141-147 https://doi.org/10.18821/0869-2084-2018-63-3-141-147
Reis A., Rudnitskaya A., Blackburn G.J., Fauzi N.M., Pitt A.R., Spickett C.M. A comparison of five lipid extraction sol-vent systems for lipidomic studies of hu-man LDL. J. Lipid Res. 2013; 54: 1812-1824 https://doi.org/10.1194/jlr.M034330
Ferrara D., Beccaria M., Cordero C.E., Purcaro G. Comprehensive compari-son of fatty acid methyl ester profile in dif-ferent food matrices using microwave-assisted extraction and derivatization methods and comprehensive two-dimensional gas chromatography coupled with flame ionization detection. Advances in Sample Preparation. 2024; 11: 100124 https://doi.org/10.1016/j.sampre.2024.100124
Costa R., Beccaria M., Grasso E., Albergamo A., Oteri M., Dugo P., Fasulo S., Mondello L. Sample preparation tech-niques coupled to advanced chromato-graphic methods for marine organisms in-vestigation. Analytica Chimica Acta. 2015; 875: 41-53 http://dx.doi.org/10.1016/j.aca.2015.03.032
Jelektronnyj resurs. Available at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=246150 (accessed 22 June 2024).
Revkov N.K. Macrozoobenthos of the Ukrainian zone of the Black Sea. In: Biological resources of the Black Sea and Sea of Azov. Eremeev V.N., Gaevskaya A.V., Shulʹman G.E., ZagorodnayaYu.A. editors. Sevastopol: EKOSI-Gidrofizika; 2011. pp. 140-162. http://doi.org/10.13140/RG.2.1.4583.7280
Voronin A.V. The densitometric quantitation of some drugs in whole blood. Bashkortostan medical journal. 2018; 13,2(74): 40-43.
Borodina A.V., Velyaev Yu.O., Osokin A.R. Comprehensive methodologi-cal approach to determining lipids in clams. Food Processing: Techniques and Technology. 2023; 53(4): 662–672. http://doi.org/10.21603/2074-9414-2023-4-2464
Kopytov Y.P. Novyj variant tonkoslojnoj hromatografii lipidov i uglevodov. Marine ecology. 1983; 13: 76-80
Renkevich A.Yu., Kulikov A.Yu. Developing and validating a quantitative determination method for 4-aminobutanoic acid in sodium alendronate tablets using micellar thin layer chromatography. Meth-ods and Objects of Chemical Analysis. 2013; 8(4): 199-206.
Zhao Y., Peng L., Yang L-C., Xu X-D., Li W-J., Luo X-M., Jin X. Wedelolac-tone regulates lipid metabolism and im-proves hepatic steatosis partly by AMPK activation and up-regulation of expression of PPARα/LPL and LDLR. PLOS ONE. 2015; 10(7): e0132720. https://doi.org/10.1371/journal.pone.0132720
Lu H., Wang Z., Cao B., Cong F., Wang X., Wei W. Dietary sources of branched-chain fatty acids and their bio-synthesis, distribution, and nutritional properties. Food Chemistry. 2024; 431: 137158. https://doi.org/10.1016/j.foodchem.2023.137158
Khan I., Hussain M., Jiang B., Zheng L., Pan Y., Hu J., Khan A., Ashraf A., Zou X. Omega-3 longchain polyunsaturated fatty acids: Metabolism and health implications. Progress in Lipid Re-search. 2023; 92(15): 101255. https://doi.org/10.1016/j.plipres.2023.101255
Karageorgou D., Rova U., Christakopoulos P., Katapodis P., Matsakas L., Patel A. Benefits of supplementation with microbial omega-3 fatty acids on hu-man health and the current market scenario for fish-free omega-3 fatty acid. Trends in Food Science & Technology. 2023; 136(4): 169-180. https://doi.org/10.1016/j.tifs.2023.04.018
Banaszak M., Dobrzyńska M., Kawka A., Gorna I., Wozniak D., Przysławski J., Drzymała-Czyż S. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases e Reports from the last 10 years. Clinical Nu-trition ESPEN. 2024; 63: 240-258. https://doi.org/10.1016/j.clnesp.2024.06.053
Bishehkolaei M., Pathak Y. Influ-ence of omega n-6/n-3 ratio on cardiovas-cular disease and nutritional interventions. Human Nutrition & Metabolism. 2024; 37: 200275
Schulze M.B., Minihane A.M., Saleh R.N.M., Risérus U. Intake and me-tabolism of omega-3 and omega-6 polyun-saturated fatty acids: nutritional implica-tions for cardiometabolic diseases. Lancet Diabetes Endocrinol. 2020; 8(11): 915-930. https://doi.org/10.1016/S2213-8587(20)30148-0
Farag M.A., Gad M.Z. Omega‑9 fat-ty acids: potential roles in inflammation and cancer management. Journal of Genet-ic Engineering and Biotechnology. 2022; 20(1): 48. https://doi.org/10.1186/s43141-022-00329-0
Xu E., Chen C., Fu J., Zhu L., Shu J., Jin M., Wang Y., Zong X. Dietary fatty acids in gut health: Absorption, metabolism and function. Animal Nutrition. 2021; 7(4): 1337-1344. https://doi.org/10.1016/j.aninu.2021.09.010
Mallick R., Basak S., Duttaroy A.K. Fatty acids and evolving roles of their pro-teins in neurological, cardiovascular disor-ders and cancers. Progress in Lipid Re-search. 2021; 83: 101116. https://doi.org/10.1016/j.plipres.2021.101116
Kawamura K., Bikkina S. A review of dicarboxylic acids and related com-pounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmospheric Research. 2016; 170: 140-160.
Song Y., Li J., Tsona N.T., Liu L., Du L. Enrichment of short-chain organic acids transferred to submicron sea spray aerosols. Science of the Total Environment. 2022; 851: 158122. https://doi.org/10.1016/j.scitotenv.2022.158122
Caracci E., Vega-Herrera A., Dachs J., Berrojalbiz N., Buonanno G., Abad E., Llorca M., Moreno T., Farré M. Mi-cro(nano)plastics in the atmosphere of the Atlantic Ocean. Journal of Hazardous Ma-terials. 2023; 450(6): 131036. https://doi.org/10.1016/j.jhazmat.2023.131036
Tourovaa T.P., Sokolovaa D.Sh., Nazinaa T.N., Gruzdeva D.S., Laptev A.B. Phylogenetic diversity of microbial com-munities from the surface of polyethylene terephthalate materials exposed to different water environments. Microbiology. 2020; 89(1): 96-106. https://doi.org/10.1134/S0026261720010154
Fidalgo Rodríguez J.L., Dynarowicz-Latka P., Miñones Conde J. How unsaturated fatty acids and plant stanols affect sterols plasma level and cel-lular membranes? Review on model studies involving the Langmuir monolayer tech-nique. Chemistry and Physics of Lipids. 2020; 232: 104968. https://doi.org/0.1016/j.chemphyslip.2020.104968
Tan K., Zhang H., Li S., Ma H., Zheng H. Lipid nutritional quality of ma-rine and freshwater bivalves and their aq-uaculture potential. Critical Reviews in Food Science and Nutrition. 2021; 62(25): 6990-7014. https://doi.org/10.1080/10408398.2021.1909531
Xu M., Zhang Y., Wu B., Zhang Y., Qiao M., Singh G., Ólafsdóttir E.S., Pálsson S., Heiðmarsson S., Boer H., Þorsteinsdóttir M., Þorkelsson G., Aðalbjörnsson B.V. A critical review of the edible seaweed Pal-mariapalmata (L.) Weber & Mohr and its bioactive compounds in the «omics» era. Algal Research. 2024; 82: 103606. https://doi.org/10.1016/j.algal.2024.103606
Vainio S., Jansen M., Koivusalo M., Rog T., Karttunen M., Vattulainen I., Iko-nen E. Significance of Sterol Structural Specificity desmosterol cannot replace cholesterol in lipid rafts. The journal of bi-ological chemistry. 2006; 281(1): 348-355. https://doi.org/10.1074/jbc.M509530200
Singh P., Saxena R., Srinivas G., Pande G., Chattopadhyay A. Cholesterol Biosynthesis and Homeostasis in Regula-tion of the Cell Cycle. PLOS ONE. 2013; 8(3): e58833. https://doi.org/10.1371/journal.pone.0058833
Leblond J.D., Sabir K., Whittemore H.L. Sterol Composition of the Peridinin-Containing Dinoflagellate Gertiastigmati-ca, a Member of the Kareniaceae without a Canonical Haptophyte-Derived Plastid. Protist. 2023; 174(2): 125939. https://doi.org/10.1016/j.protis.2023.125939
Fiorini R., Ventrella V., Trombetti F., Fabbri M., Pagliarani A., Nesci S. Lipid-protein interactions in mitochondrial mem-branes from bivalve mollusks: molecular strategies in different species. Comparative Biochemistry and Physiology Part B Bio-chemistry and Molecular Biology. 2019; 227:12-20. https://doi.org/10.1016/j.cbpb.2018.08.010.
Islam N., Choi S.H., Moon H.E., Park J.J., Jung H.Ah., Woo M.H., Woo H.C., Choi J.S. The inhibitory activities of the edible green alga Capsosiphon ful-vescens on rat lens aldose reductase and advanced glycation end products for-mation. European Journal of Nutrition. 2014; 53: 233-242. https://doi.org/10.1007/s00394-013-0521-y
Balamurugan R., Duraipandiyan V., Ignacimuthu S. Antidiabetic activity of γ-sitosterol isolated from Lippianodiflora L. in streptozotocin induced diabetic rats. Eu-ropean Journal of Pharmacology. 2011; 667: 410-418. https://doi.org/10.1016/j.ejphar.2011.05.025
Narloch I., Wejnerowska G. A Comparative analysis on the environmental impact of selected methods for determining the profile of fatty acids in cheese. Mole-cules. 2023; 28: 4981. https://doi.org/10.3390/molecules28134981
Polok K., Subba N., Gadomski W., Sen P. Search for the origin of synergistic solvation in methanol/chloroform mixture using optical Kerr effect spectroscopy. Journal of Molecular Liquids. 2022; 345: 117013. https://doi.org/10.1016/j.molliq.2021.117013
Sıdır Y.G., Sıdır I. Solvent effect on the absorption and fluorescence spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin: Determination of ground and excited state dipole moments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013; 102: 286-296. https://doi.org/10.1016/j.saa.2012.10.018
Lizhi Hu., Toyoda K., Ihara I. Die-lectric properties of edible oils and fatty acids as a function of frequency, tempera-ture, moisture and composition. Journal of Food Engineering. 2008; 88(2): 151-158. https://doi.org/10.1016/j.jfoodeng.2007.12.035.
Alviso D., Zarate C., Artana G., Duriez T. Regressions of the dielectric con-stant and speed of sound of vegetable oils from their composition and temperature using genetic programming. Journal of Food Composition and Analysis. 2021; 104: 104175. https://doi.org/10.1016/j.jfca.2021.104175