The study of various methodological approaches to the extraction of fatty acid fraction from a complex biological matrix and the identification of its composition using gas chromatography-mass spectrometry (GC/MS)
Abstract
The fatty acid composition of the biological matrix obtained on the basis of lipid extraction from the bivalve mollusk Polititapes aureus (Gmelin, 1791), widely distributed in the Black Sea, including on its Sevastopol coast, was studied. Lipid fraction extraction was carried out by two methods: the Folch method and the Bligh-Dyer method. Sample preparation for gas chromatography with mass spectrometry (GC/MS) examination of samples in both cases was the same and as gentle as possible in terms of the duration of the temperature regime and the aggressiveness of chemical reagents in order to maximize the preservation of the native structure of the fatty acid extract isolated from the tissues of the mollusk. As a result of the analysis, a total of 14 saturated fatty acids were detected in the tissues of P. aurea, including: 12-Me-13:0, 12-Me-14:0, 14-Me-16:0 and 20-Me-21:0, 5 SFAs and 9 PUFAs. Of these acids, four omega-3, four omega-6 and four omega-9 acids have been identified. The most valuable PUFAs are: 18:4n-3,6,9,12, 18:2n-6,9, 20:4n-6,9,11,14, 20:5n-3,6,9,12,15 and 22:6n-3,6,9,12,15,18. A number of sterols have also been found. The results showed that the Folch method provides a greater extraction of substances of a lipid nature than the Bligh-Dyer method, which can be explained by the greater chemical affinity of the extractant obtained by the Folch method in relation to the native lipids of the studied mollusk.
Downloads
References
Rozentsvet O.A., Fedoseeva E.V., Terekhova V.A. Lipidnye biomarkery v ehkologicheskoy otsenke pochvennoy bio-ty: analiz zhirnykh kislot. Biology Bulletin Reviews. 2019; 139(2): 161-177. http://doi.org/10.1134/S0042132419020078
Zhukova N.V. Diss. dokt. biol. nauk. Vladivostok. 2009. 267 p. (In Russ.)
Bakhmet I.N., Fokina N.N., Ruoko-lainen T.R. Changes of Heart Rate and Li-pid Composition in Mytilus Edulis and Modiolus Modiolus Caused by crude oil pollution and low salinity effects. Journal of Xenobiotics. 2021; 11(2): 46-60. http://doi.org/10.3390/jox11020004
Fokina N.N., Ruokolainen T.R., Nemova N.N., Martynova D.M., Sukhotin A.A. Fatty acids distribution in seston, tis-sues, and faecal pellets of blue mussels Mytilusedulis L. Doklady Biochemistry and Biophysics. 2020; 495(1): 311-318. http://doi.org/10.1134/S1607672920060046
Fokina N.N., Ruokolainen T.R., Bakhmet I.N., Nemova N.N. Role of lipids in adaptation of mussels Mytilus edulis L. of the White Sea to rapid changes in tem-perature. Doklady Biochemistry and Bio-physics. 2014; 457: 155-157. http://doi.org/10.1134/S1607672914040103
Tanrıverdi R., Gökoğlu M., Korun J., Raziye Y.T. A preliminary study on the traits of Chamelea gallina (Linnaeus, 1758) in the Gulf of Antalya, Mediterranean Coast of Turkey (Levantine Sea). Acta Aquatica: Aquatic Sciences Journal. 2019; 6(2): 103-108. http://doi.org/10.29103/aa.v6i1.1551
Borodina A.V. Zadorozhny P.A. Distinctive variations in carotenoid accu-mulation in tissues of the clam Polititapes aureus (Gmelin, 1791) from the Black Sea. Russian Journal of Marine Biology. 2022; 48(5): 393-397. http://doi.org/10.1134/S1063074022050145
Folch J., Lees M., Sloane Stanley C.H. A simple method for the isolation and purification of total lipids from animal tis-sue. Journal of Biological Chemistry. 1957; 226(1): 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purifi-cation. Can J. Biochem Physiol. 1959;37(8):911-917. https://doi.org/10.1139/o59-099
Iverson S.J., Lang S.L.C., Cooper M.H. Comparison of the Bligh and Dyer and Folch methods for total lipid determi-nation in a broad range of marine tissue. Lipids. 2001; 36(11):1283-1287 https://doi.org/10.1007/s11745-001-0843-0
Vostrikova N.L., Kuznetsova O.A., Kulikovsky A.V. Methodological aspects of lipid extraction from biological matri-ces. Theory and practice of meat pro-cessing. 2018; 3 (2): 4-21. https://doi.org/10.21323/2414-438X‑2018-3-2-4-21
Aripovsky A.V., Kolesnik P.O., Ku-lagina T.P., Titov V.N. Podgotovka prob dlya gazohromatograficheskogo opredele-niya zhirnyh kislot: preimushchestva bez-ekstrakcionnogo metoda s pryamoj pereet-erifikaciej lipidov vysushennyh biolog-icheskih prob. Klinichescheskaya Laboratornaya Diagnostika. 2018; 63 (3): 141-147 https://doi.org/10.18821/0869-2084-2018-63-3-141-147
Reis A., Rudnitskaya A., Blackburn G.J., Fauzi N.M., Pitt A.R., Spickett C.M. A comparison of five lipid extraction sol-vent systems for lipidomic studies of hu-man LDL. J. Lipid Res. 2013; 54: 1812-1824 https://doi.org/10.1194/jlr.M034330
Ferrara D., Beccaria M., Cordero C.E., Purcaro G. Comprehensive compari-son of fatty acid methyl ester profile in dif-ferent food matrices using microwave-assisted extraction and derivatization methods and comprehensive two-dimensional gas chromatography coupled with flame ionization detection. Advances in Sample Preparation. 2024; 11: 100124 https://doi.org/10.1016/j.sampre.2024.100124
Costa R., Beccaria M., Grasso E., Albergamo A., Oteri M., Dugo P., Fasulo S., Mondello L. Sample preparation tech-niques coupled to advanced chromato-graphic methods for marine organisms in-vestigation. Analytica Chimica Acta. 2015; 875: 41-53 http://dx.doi.org/10.1016/j.aca.2015.03.032
Jelektronnyj resurs. Available at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=246150 (accessed 22 June 2024).
Revkov N.K. Macrozoobenthos of the Ukrainian zone of the Black Sea. In: Biological resources of the Black Sea and Sea of Azov. Eremeev V.N., Gaevskaya A.V., Shulʹman G.E., ZagorodnayaYu.A. editors. Sevastopol: EKOSI-Gidrofizika; 2011. pp. 140-162. http://doi.org/10.13140/RG.2.1.4583.7280
Voronin A.V. The densitometric quantitation of some drugs in whole blood. Bashkortostan medical journal. 2018; 13,2(74): 40-43.
Borodina A.V., Velyaev Yu.O., Osokin A.R. Comprehensive methodologi-cal approach to determining lipids in clams. Food Processing: Techniques and Technology. 2023; 53(4): 662–672. http://doi.org/10.21603/2074-9414-2023-4-2464
Kopytov Y.P. Novyj variant tonkoslojnoj hromatografii lipidov i uglevodov. Marine ecology. 1983; 13: 76-80
Renkevich A.Yu., Kulikov A.Yu. Developing and validating a quantitative determination method for 4-aminobutanoic acid in sodium alendronate tablets using micellar thin layer chromatography. Meth-ods and Objects of Chemical Analysis. 2013; 8(4): 199-206.
Zhao Y., Peng L., Yang L-C., Xu X-D., Li W-J., Luo X-M., Jin X. Wedelolac-tone regulates lipid metabolism and im-proves hepatic steatosis partly by AMPK activation and up-regulation of expression of PPARα/LPL and LDLR. PLOS ONE. 2015; 10(7): e0132720. https://doi.org/10.1371/journal.pone.0132720
Lu H., Wang Z., Cao B., Cong F., Wang X., Wei W. Dietary sources of branched-chain fatty acids and their bio-synthesis, distribution, and nutritional properties. Food Chemistry. 2024; 431: 137158. https://doi.org/10.1016/j.foodchem.2023.137158
Khan I., Hussain M., Jiang B., Zheng L., Pan Y., Hu J., Khan A., Ashraf A., Zou X. Omega-3 longchain polyunsaturated fatty acids: Metabolism and health implications. Progress in Lipid Re-search. 2023; 92(15): 101255. https://doi.org/10.1016/j.plipres.2023.101255
Karageorgou D., Rova U., Christakopoulos P., Katapodis P., Matsakas L., Patel A. Benefits of supplementation with microbial omega-3 fatty acids on hu-man health and the current market scenario for fish-free omega-3 fatty acid. Trends in Food Science & Technology. 2023; 136(4): 169-180. https://doi.org/10.1016/j.tifs.2023.04.018
Banaszak M., Dobrzyńska M., Kawka A., Gorna I., Wozniak D., Przysławski J., Drzymała-Czyż S. Role of Omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases e Reports from the last 10 years. Clinical Nu-trition ESPEN. 2024; 63: 240-258. https://doi.org/10.1016/j.clnesp.2024.06.053
Bishehkolaei M., Pathak Y. Influ-ence of omega n-6/n-3 ratio on cardiovas-cular disease and nutritional interventions. Human Nutrition & Metabolism. 2024; 37: 200275
Schulze M.B., Minihane A.M., Saleh R.N.M., Risérus U. Intake and me-tabolism of omega-3 and omega-6 polyun-saturated fatty acids: nutritional implica-tions for cardiometabolic diseases. Lancet Diabetes Endocrinol. 2020; 8(11): 915-930. https://doi.org/10.1016/S2213-8587(20)30148-0
Farag M.A., Gad M.Z. Omega‑9 fat-ty acids: potential roles in inflammation and cancer management. Journal of Genet-ic Engineering and Biotechnology. 2022; 20(1): 48. https://doi.org/10.1186/s43141-022-00329-0
Xu E., Chen C., Fu J., Zhu L., Shu J., Jin M., Wang Y., Zong X. Dietary fatty acids in gut health: Absorption, metabolism and function. Animal Nutrition. 2021; 7(4): 1337-1344. https://doi.org/10.1016/j.aninu.2021.09.010
Mallick R., Basak S., Duttaroy A.K. Fatty acids and evolving roles of their pro-teins in neurological, cardiovascular disor-ders and cancers. Progress in Lipid Re-search. 2021; 83: 101116. https://doi.org/10.1016/j.plipres.2021.101116
Kawamura K., Bikkina S. A review of dicarboxylic acids and related com-pounds in atmospheric aerosols: Molecular distributions, sources and transformation. Atmospheric Research. 2016; 170: 140-160.
Song Y., Li J., Tsona N.T., Liu L., Du L. Enrichment of short-chain organic acids transferred to submicron sea spray aerosols. Science of the Total Environment. 2022; 851: 158122. https://doi.org/10.1016/j.scitotenv.2022.158122
Caracci E., Vega-Herrera A., Dachs J., Berrojalbiz N., Buonanno G., Abad E., Llorca M., Moreno T., Farré M. Mi-cro(nano)plastics in the atmosphere of the Atlantic Ocean. Journal of Hazardous Ma-terials. 2023; 450(6): 131036. https://doi.org/10.1016/j.jhazmat.2023.131036
Tourovaa T.P., Sokolovaa D.Sh., Nazinaa T.N., Gruzdeva D.S., Laptev A.B. Phylogenetic diversity of microbial com-munities from the surface of polyethylene terephthalate materials exposed to different water environments. Microbiology. 2020; 89(1): 96-106. https://doi.org/10.1134/S0026261720010154
Fidalgo Rodríguez J.L., Dynarowicz-Latka P., Miñones Conde J. How unsaturated fatty acids and plant stanols affect sterols plasma level and cel-lular membranes? Review on model studies involving the Langmuir monolayer tech-nique. Chemistry and Physics of Lipids. 2020; 232: 104968. https://doi.org/0.1016/j.chemphyslip.2020.104968
Tan K., Zhang H., Li S., Ma H., Zheng H. Lipid nutritional quality of ma-rine and freshwater bivalves and their aq-uaculture potential. Critical Reviews in Food Science and Nutrition. 2021; 62(25): 6990-7014. https://doi.org/10.1080/10408398.2021.1909531
Xu M., Zhang Y., Wu B., Zhang Y., Qiao M., Singh G., Ólafsdóttir E.S., Pálsson S., Heiðmarsson S., Boer H., Þorsteinsdóttir M., Þorkelsson G., Aðalbjörnsson B.V. A critical review of the edible seaweed Pal-mariapalmata (L.) Weber & Mohr and its bioactive compounds in the «omics» era. Algal Research. 2024; 82: 103606. https://doi.org/10.1016/j.algal.2024.103606
Vainio S., Jansen M., Koivusalo M., Rog T., Karttunen M., Vattulainen I., Iko-nen E. Significance of Sterol Structural Specificity desmosterol cannot replace cholesterol in lipid rafts. The journal of bi-ological chemistry. 2006; 281(1): 348-355. https://doi.org/10.1074/jbc.M509530200
Singh P., Saxena R., Srinivas G., Pande G., Chattopadhyay A. Cholesterol Biosynthesis and Homeostasis in Regula-tion of the Cell Cycle. PLOS ONE. 2013; 8(3): e58833. https://doi.org/10.1371/journal.pone.0058833
Leblond J.D., Sabir K., Whittemore H.L. Sterol Composition of the Peridinin-Containing Dinoflagellate Gertiastigmati-ca, a Member of the Kareniaceae without a Canonical Haptophyte-Derived Plastid. Protist. 2023; 174(2): 125939. https://doi.org/10.1016/j.protis.2023.125939
Fiorini R., Ventrella V., Trombetti F., Fabbri M., Pagliarani A., Nesci S. Lipid-protein interactions in mitochondrial mem-branes from bivalve mollusks: molecular strategies in different species. Comparative Biochemistry and Physiology Part B Bio-chemistry and Molecular Biology. 2019; 227:12-20. https://doi.org/10.1016/j.cbpb.2018.08.010.
Islam N., Choi S.H., Moon H.E., Park J.J., Jung H.Ah., Woo M.H., Woo H.C., Choi J.S. The inhibitory activities of the edible green alga Capsosiphon ful-vescens on rat lens aldose reductase and advanced glycation end products for-mation. European Journal of Nutrition. 2014; 53: 233-242. https://doi.org/10.1007/s00394-013-0521-y
Balamurugan R., Duraipandiyan V., Ignacimuthu S. Antidiabetic activity of γ-sitosterol isolated from Lippianodiflora L. in streptozotocin induced diabetic rats. Eu-ropean Journal of Pharmacology. 2011; 667: 410-418. https://doi.org/10.1016/j.ejphar.2011.05.025
Narloch I., Wejnerowska G. A Comparative analysis on the environmental impact of selected methods for determining the profile of fatty acids in cheese. Mole-cules. 2023; 28: 4981. https://doi.org/10.3390/molecules28134981
Polok K., Subba N., Gadomski W., Sen P. Search for the origin of synergistic solvation in methanol/chloroform mixture using optical Kerr effect spectroscopy. Journal of Molecular Liquids. 2022; 345: 117013. https://doi.org/10.1016/j.molliq.2021.117013
Sıdır Y.G., Sıdır I. Solvent effect on the absorption and fluorescence spectra of 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin: Determination of ground and excited state dipole moments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013; 102: 286-296. https://doi.org/10.1016/j.saa.2012.10.018
Lizhi Hu., Toyoda K., Ihara I. Die-lectric properties of edible oils and fatty acids as a function of frequency, tempera-ture, moisture and composition. Journal of Food Engineering. 2008; 88(2): 151-158. https://doi.org/10.1016/j.jfoodeng.2007.12.035.
Alviso D., Zarate C., Artana G., Duriez T. Regressions of the dielectric con-stant and speed of sound of vegetable oils from their composition and temperature using genetic programming. Journal of Food Composition and Analysis. 2021; 104: 104175. https://doi.org/10.1016/j.jfca.2021.104175




