Методы определения свойств обращенно-фазовых хроматографических сорбентов (обзор)

  • Grigoriy B. Golubitckiy Голубицкий Григорий Борисович – д.х.н., начальник отдела новых технологий ОАО «Фармстандарт-Лексредства», Курск
Ключевые слова: обращенно-фазовые сорбенты, эндкейпинг, гидрофобность, остаточная силанольная активность, селективность по форме, гидрофильно-гидрофобный баланс, хемометрическая обработка данных.

Аннотация

Рассмотрены методы определения свойств обращенно-фазовых хроматографических
сорбентов, опубликованные в 1990 – 2012 гг. Отдельные источники, отражающие наиболее
важные проблемы данной тематики, относятся к более раннему периоду. В обзоре отражены
физико-химические, хроматографические методы исследования свойств сорбентов, а также
представлены подходы к изучению их стабильности. В настоящее время не существует
универсального теста для исследования обращенных фаз, каждый метод имеет свои особенности и
области применения. Данное направление имеет большое научное и практическое значение и
следует ожидать его развития в будущем.

Скачивания

Данные скачивания пока не доступны.

Литература

1. Visky D. 4 Column characterization and selection ( HPLC method development for
pharmaceuticals. Separation science and technology. V. 8) // Edited by S. Ahuja, H.
Rasmussen. Amsterdam, Boston, Heidelberg et. al. : Elsevier Inc., 2007. Р. 85–109 .
2. Engelhardt H., Low H., Gotzinger W. Chromatographic characterization of silicabased
reversed phases. Review // J. Chromatogr. 1991. V. 544. P. 371–379.
3. Rogers S.D., Dorsey J.G. Chromatographic silanol activity test procedures: the quest
for a universal test. Review // J. Chromatogr. A. 2000. V. 892. N 1–2. P. 57–65.
4. Vervoort R.J.M., Debets A.J.J., Claessens H.A., Cramers C.A., de Jong G.J.
Optimisation and characterisation of silica-based reversed-phase liquid chromatographic systems for the analysis of basic pharmaceuticals. Review // J. Chromatogr. A. 2000. V.
897. N. 1–2. P. 1–22.
5. Claessens H.A., van Straten M.A. Review on the chemical and thermal stability of
stationary phases for reversed-phase liquid chromatography. Review // J. Chromatogr. A.
2004. V. 1060. N. 1–2. P. 23–41.
6. McCalley D.V. The challenges of the analysis of basic compounds by high
performance liquid chromatography: Some possible approaches for improved separations.
Review // J. Chromatogr. A. 2010. V. 1217. N. 6. P. 858–880.
7. Snyder L.R., Dolan J.W., Carr P.W. The hydrophobic-subtraction model of reversedphase
column selectivity. Review // J. Chromatogr. A. 2004. V. 1060. N. 1–2. P. 77–116.
8. Nawrocki J. The silanol group and its role in liquid chromatography. Review // J.
Chromatogr. A. 1997. V. 779. N. 1–2. P. 29–71.
9. Nahum A., Horváth C. Surface silanols in silica-bonded hydrocarbonaceous stationary
phases: I. Dual retention mechanism in reversed-phase chromatography // J. Chromatogr.
A. 1981. V. 203. P. 53–63.
10. Bij K.E., Horváth C., Melander W.R., Nahum A. Surface silanols in silica-bonded
hydrocarbonaceous stationary phases II. Irregular retention behavior and effect of silanol
masking // J. Chromatogr. A. 1981. V. 203. P. 65–84.
11. Scholten A.B., Claessens H.A., de Haan J.W., Cramers C.A. Chromatographic
activity of residual silanols of alkylsilane derivatized silica surfaces // J. Chromatogr. A.
1997. V. 759. N. 1–2. P. 37–46.
12. Bereznitski Y., Jaroniec M., Gangoda M.E. Characterization of silica-based octyl
phases of different bonding density Part II. Studies of surface properties and
chromatographic selectivity // J. Chromatogr. A. 1998. V. 828. N. 1–2. P. 59–73.
13. Sunseri J. D., Cooper W.T., Dorsey J.G. Reducing residual silanol interactions in
reversed-phase liquid chromatography. Thermal treatment of silica before derivatization //
J. Chromatogr. A. 2003. V. 1011. N. 1–2. P. 23–29.
14. Pesek J.J., Matyska M.T., Yu R.J. Synthesis and characterization of endcapped C18
stationary phases using a silica hydride intermediate // J. Chromatogr. A. 2002. V. 947. N.
2. P. 195–203.
15. Carrara C., Lopez C., Caldarelli S. Chromatographic-nuclear magnetic resonance can
provide a prediction of high-pressure liquid chromatography shape selectivity tests // J.
Chromatogr. A. 2012. V. 1257. P. 204–207.
16. Buszewski B., Bocian Sz., Felinger A. Excess isotherms as a new way for
characterization of the columns for reversed-phase liquid chromatography // J.
Chromatogr. A. 2008. V. 1191. N. 1–2. P. 72–77.
17. Srinivasan G., Meyer C., Welsch N., Albert K., Müller K. Influence of synthetic
routes on the conformational order and mobility of C18 and C30 stationary phases // J.
Chromatogr. A. 2006. V. 1113. N. 1–2. P. 45–54.
18. Kohler J., Kirkland J.J. Improved silica-based column packings for high-performance
liquid chromatography // J. Chromatogr. 1987. V. 385. P. 125–150.
19. Doyle C.A., Vickers T.J., Mann C.K., Dorsey J.G. Characterization of C18- bonded
liquid chromatographic stationary phases by Raman spectroscopy: the effect of mobile
phase composition // J. Chromatogr. A. 2000. V. 877. N. 1–2. P. 25–39.
20. Pemberton J.E., Ho M., Orendorff C.J., Ducey M.W. Raman spectroscopy of
octadecylsilane stationary phase conformational order. Effect of solvent // J. Chromatogr.
A. 2001. V. 913. N. 1–2. P. 243–252.
21. Doyle C. A. , Vickers T.J., Mann C.K., Dorsey J.G. Characterization of C18-bonded
liquid chromatographic stationary phases by Raman spectroscopy: the effect of
temperature // J. Chromatogr. A. 2000. V. 877. N. 1–2. P. 41–59.
22. Doyle C. A. , Vickers T.J., Mann C.K., Dorsey J.G. Characterization of C18-bonded
liquid chromatographic stationary phases by Raman spectroscopy. Effect of ligand type //
J. Chromatogr. A. 1997. V. 779. N. 1–2. P. 91–112.
23. Lumley B., Khong T.M., Perrett D. The characterisation of chemically bonded
chromatographic stationary phases by thermogravimetry // Chromatographia. 2004. V. 60.
N. 1/2. P. 59–62.
24. Ashu-Arrah B.A., Glennon J.D., Albert K. Synthesis, characterisation and
chromatographic evaluation of pentafluorophenyl and phenyl bonded silica phases
prepared using supercritical carbon dioxide as a reaction solvent // J. Chromatogr. A. 2013.
V. 1273. P. 34–43.
25. Schmidt I., Minceva M., Arlt W. Selection of stationary phase particle geometry
using X-ray computed tomography and computational fluid dynamics simulations // J.
Chromatogr. A. 2012. V. 1225. P. 141–149.
26. Sander L.C., Wise S.A. Shape selectivity in reversed-phase liquid chromatography
for the separation of planar and non-planar solutes // J. Chromatogr. A. 1993. V. 656. N. 1–
2. P. 335–351.
27. Ottaviani M. F., Leonardis I., Cappiello A., Cangiotti M., Mazzeo R., Trufelli H.,
Palma P. Structural modifications and adsorption capability of C18-silica/binary solvent
interphases studied by EPR and RP-HPLC // J. Coll. Interface Sci. 2010. V. 352. N. 2. P.
512–519.
28. Liu Y., Grinberg N., Thompson K.C., Wenslow R.M., Neue U.D., Morrison D.,
Walter T.H., O’Gara J.E., Wyndham K.D. Evaluation of a C18 hybrid stationary phase
using high-temperature chromatography // Analyt. Chim. Acta. 2005. V. 554. N. 1–2. P.
144–151.
29. Buszewski B., Bocian S., Rychlicki G., Vajda P., Felinger A. Study of solvent
adsorption on chemically bonded stationary phases by microcalorimetry and liquid
chromatography // J. Coll. Interface Sci. 2010. V. 349. N. 2. P. 620–625.
30. Gritti F., Kazakevich Y.V., Guiochon G. Effect of the surface coverage of endcapped
C18-silica on the excess adsorption isotherms of commonly used organic solvents from
water in reversed phase liquid chromatography // J. Chromatogr. A. 2007. V. 1169. N. 1–2.
P. 111–124.
31. Guan-Sajonz H., Guiochon G. Effect of packing pressure on the performance of C18
reversed-phase liquid chromatographic columns // J. Chromatogr. A. 1996. V. 743. N. 2. P.
247–259.
32. Рудаков О.Б., Рудакова Л.В. Гидрофобно-гидрофильный баланс жидкостных
хроматографических систем // Бутлеровские сообщения. 2011. Т.24. №2. С. 22–32.
33. McCalley D.V., Brereton R.G. High-performance liquid chromatography of basic
compounds. Problems, possible solutions and tests of reversed-phase columns // J.
Chromatogr. A. 1998. V. 828. N. 1–2. P. 407–420.
34. Euerby M.R., Petersson P. Chromatographic classification and comparison of
commercially available reversed-phase liquid chromatographic columns using principal
component analysis // J. Chromatogr. A. 2003. V. 994. N. 1–2. P. 13–36.
35. Visky D., Vander H.Y., Iványi T., Baten P., De Beerc J., Kovács Z., Noszál B., Roets
E., Massart D.L., Hoogmartens J. Characterisation of reversed-phase liquid
chromatographic columns by chromatographic tests. Evaluation of 36 test parameters:
repeatability, reproducibility and correlation // J. Chromatogr. A. 2002. V. 977. N. 1. P.
39–58.
36. Jandera P., Novotná K., Beldean-Galea M.S., Jísa K. Retention and selectivity tests
of silica-based and metal-oxide bonded stationary phases for RP-HPLC // J. Sep. Sci. 2006.
V. 29. N. 6. P. 856–871.
37. Jandera P., Bunceková S., Halama M., Novotná K., Nepras M. Naphthalene
sulphonic acids – new test compounds for characterization of the columns for reversedphase
chromatography // J. Chromatogr. A. 2004. V. 1059. N. 1–2. P. 61–72.
38. Gritti F., Guiochon G. Effect of the density of the C18 surface coverage on the
adsorption mechanism of a cationic compound and on the silanol activity of the stationary
phase in reversed phase liquid chromatography // J. Chromatogr. A. 2006. V. 1132. N. 1–2.
P. 51–66.
39. Méndez A., Bosch E., Rosés M., Neue U.D. Comparison of the acidity of residual
silanol groups in several liquid chromatography columns // J. Chromatogr. A. 2003. V.
986. N. 1. P. 33–44.
40. Herrero-Martínez J.M., Méndez A., Bosch E., Rosés M. Characterization of the
acidity of residual silanol groups in microparticulate and monolithic reversed-phase
columns // J. Chromatogr. A. 2004. V. 1060. N. 1–2. P. 135–145.
41. Marín A., Barbas C. Systematic comparison of different functionality columns for a
classical pharmaceutical problem // J. Pharm. Biomed. Anal. 2006. V. 40. N. 2. P. 262–
270.
42. Nyiredy S., Szűcs Z., Szepesy L. Stationary-phase optimized selectivity LC (SOS–
LC): separation examples and practical aspects // Chromatographia. 2006. Suppl. 13. V.
63. P. S3–S9.
43. Dolan J.W., Snyder L.R., Blanc T. Selectivity differences for C18 and C8 reversedphase
columns as a function of temperature and gradient steepness. II. Minimizing column
reproducibility problems // J. Chromatogr A. 2000. V. 897. N. 1–2. P. 51–63.
44. Zhu P. I., Dolan J. W., Snyder L. R. Combined use of temperature and solvent
strength in reversed-phase gradient elution. II. Comparing selectivity for different samples
and systems // J. Chromatogr. A. 1996. V. 756. N. 1–2. P. 41–50.
45. Zhu P.I., Dolan J.W., Snyder L.R., Hill D.W., Van Heukelem L., Waeghe T.J.
Combined use of temperature and solvent strength in reversed-phase gradient elution. III.
Selectivity for ionizable samples as a function of sample type and pH // J. Chromatogr. A.
1996. V. 756. N. 1–2. P. 51–62.
46. Zhu P.I., Dolan J.W., Snyder L.R., Djordjevic N.M., Hill D.W., Lin J.-T., Sander
L.C., Van Heukelem L. Combined use of temperature and solvent strength in reversedphase
gradient elution. IV. Selectivity for neutral (non-ionized) samples as a function of
sample type and other separation conditions // J. Chromatogr. A. 1996. V. 756. N. 1–2. P.
63–72.
47. Kaliszan R., Van Straten M.A., Markuszewski M., Cramers C.A., Claessens H.A.
Molecular mechanism of retention in reversed-phase high-performance liquid
chromatography and classification of modern stationary phases by using quantitative
structure–retention relationships // J. Chromatogr. A. 1999. V. 855. N. 2. P. 455–486.
48. Schmitz S.J., Zwanziger H., Engelhardt H. Characterization of reversed phases by
chemometric methods // J. Chromatogr. A. 1991. V. 544. P. 381–391.
49. Tan L.C., Carr P.W., Abraham M.H. Study of retention in reversed-phase liquid
chromatography using linear solvation energy relationships. I. The stationary phase // J.
Chromatogr. A. 1996. V. 752. N. 1–2. P. 1–18.
50. Sándi A., Nagy M., Szepesy L. Characterization of reversed-phase columns using the
linear free energy relationship. III. Effect of the organic modifier and the mobile phase
composition // J. Chromatogr. A. 2000. V. 893. N. 2. P. 215–234.
51. Wilson N.S., Nelson M.D., Dolan J.W., Snyder L.R., Wolcott R.G., Carr P.W.
Column selectivity in reversed-phase liquid chromatography. I. A general quantitative
relationship // J. Chromatogr. A. 2002. V. 961. N. 2. P. 171–193.
52. Wilson N.S., Nelson M.D., Dolan J.W., Snyder L.R., Carr P.W. Column selectivity
in reversed-phase liquid chromatography II. Effect of a change in conditions // J.
Chromatogr. A. 2002. V. 961. N. 2. P. 195–215.
53. Wilson N.S., Dolan J.W., Snyder L.R., Carr P.W., Sander L.C. Column selectivity in
reversed-phase liquid chromatography III. The physico-chemical basis of selectivity // J.
Chromatogr. A. 2002. V. 961. N. 2. P. 217–236.
54. Baczek T., Kaliszan R., Novotná K., Jandera P. Comparative characteristics of HPLC
columns based on quantitative structure-retention relationships (QSRR) and hydrophobicsubtraction
model // J. Chromatogr. A. 2005. V. 1075. N. 1–2. P. 109–115.
55. Smith R.M., Subba Rao P.V., Dube S., Shah H. Problems of the interlaboratory
transferability of the measurement of the properties of a reversed-phase HPLC column //
Chromatographia. Suppl. V. 57. 2003. P. S27–S37.
56. Neue U.D., Phoebe C.H., Tran K., Cheng Y.-F., Lu Z. Dependence of reversed-phase
retention of ionizable analytes on pH, concentration of organic solvent and silanol activity
// J. Chromatogr. A. 2001. V. 925. N. 1–2. P. 49–67.
57. Голубицкий Г.Б., Иванов В.М. Метод оценки остаточной силанольной
активности обращенно-фазовых хроматографических сорбентов // Журн. аналит.
химии. 2008. Т. 63. № 4. С. 388–395.
58. Голубицкий Г.Б. Способ определения остаточной силанольной активности
обращенно-фазовых хроматографических сорбентов // Пат. 2334982 Российская
Федерация. Опубл. 27.09.08. Бюл. № 27. 8 с.
59. Lesellier E., Tchapla A. A simple subcritical chromatographic test for an extended
ODS high performance liquid chromatography column classification // J. Chromatography
A. 2005. V. 1100. N. 1. P. 45–59.
60. Lesellier E., Tchapla A. Use of carotenoids in the characterization of octadecylsilane
bonded columns and mechanism of retention of carotenoids on monomeric and polymeric
stationary phases // J. Chromatogr. A. 1993. V. 645. N. 1. P. 29–39.
61. Kirkland J.J., van Straten M.A., Claessens H.A. High pH mobile phase effects on
silica-based reversed-phase high-performance liquid chromatographic columns // J.
Chromatogr. A. 1995. V. 691. N. 1–2. P. 3–19.
62. Fonseca D.A., Gutierrez H.R., Collins K.E., Collins C.H. Rapid method for
evaluating reversed-phase high-performance liquid chromatography column stability // J.
Chromatogr. A. 2004. V. 1030. N. 1–2. P. 149–155.
63. Kirkland J.J., van Straten M.A., Claessens H.A. Reversed-phase high-performance
liquid chromatography of basic compounds at pH 11 with silica-based column packings //
J. Chromatogr. A. 1998. V. 797. N. 1–2. P. 111–120.
64. Rogers S.D. Chromatographic silanol activity tests: the development of a
comprehensive test procedure // Diss. doct.philos. The Florida state university, 2003.120 p.
Опубликован
2019-11-21
Как цитировать
Golubitckiy, G. B. (2019). Методы определения свойств обращенно-фазовых хроматографических сорбентов (обзор). Сорбционные и хроматографические процессы, 13(4). извлечено от https://journals.vsu.ru/sorpchrom/article/view/1657