Separation of carotenoids during reversed-phase HPLC: retention mechanism and methylene selectivity on a monomeric stationary phase

  • Viktor I. Deineka Белгородский государственный национальный исследовательский университет, Белгород, Россия
  • Taisia G. Burzhinskaya Белгородский государственный национальный исследовательский университет, Белгород, Россия
  • Lyudmila A. Deineka Белгородский государственный национальный исследовательский университет, Белгород, Россия
Keywords: retention, TLC, RP-HPLC, sorption distribution mechanism, carotenoids, xanthophyll diesters, methylene selectivity

Abstract

Fractions of carotenoids of orange bell pepper (Capsicum annuum) obtained by means of normal phase thin layer chromatography were used to study certain features of chromatographic retention of carotenoids during reversed-phase HPLC on a traditional monomeric stationary phase. The difference in the retention of α- and β-carotenoids on stationary phases of the same make (Kromasil) with different lengths of implanted radicals (C18, C8, and C4) in the same composition of the mobile phase demonstrates the presence of sorption distribution of carotenoids on the monomeric C18 phase. We compared the eluting ability of acetone, ethyl acetate, and 2-propanol used as additives to acetonitrile towards carotenoids. The study determined that ethyl acetate has the greatest eluting ability. A similar ability demonstrated by 2-propanol is explained by the literature data regarding the self-association of the compound and its association with acetonitrile. To determine the methylene selectivity a fraction of zeaxanthin diesters was used. In the article we also explain why it is not advisable to use all the substances of the homologous series to determine the methylene selectivity based on the concept of atoms of the same type suggested by V.M. Tatevsky. The article describes a method of calculating the quantitative characteristics of retention of the elements of the homologous series using the “dead” time determined based on the retention of uracil and homologues. The obtained increments (contributions to the retention of a pair of methylene groups) varied significantly. The article presents the discussion of the obtained results. It compares the behaviour of homologous series based on zeaxanthin and capsanthin, the latter being more hydrophilic. The article demonstrates the advantages of determining the “dead” time based on the retention of homologous series. We also observed a predicted earlier dependence of the increments (or methylene selectivity) on the structure of the homologous series: while for all the transitions between diesters (from dilaurate to dipalmitate) the increments are the same, the increments of capsanthin diesters retained less strongly are by 0.002 logarithmic units lower than those of zeaxanthin diesters.

Downloads

Download data is not yet available.

Author Biographies

Viktor I. Deineka, Белгородский государственный национальный исследовательский университет, Белгород, Россия

Professor of the Department of General Chemistry Belgorod state national research University, Belgorod, e-mail deineka@bsu.edu.ru

Taisia G. Burzhinskaya, Белгородский государственный национальный исследовательский университет, Белгород, Россия

Senior Lecturer of the Department of General Chemistry, Belgorod State National Research University, Belgorod

Lyudmila A. Deineka, Белгородский государственный национальный исследовательский университет, Белгород, Россия

Associate Professor of the Department of General Chemistry Belgorod state national research University, Belgorod, e-mail deyneka@bsu.edu.ru

References

Fraser P.D., Bramley P.M. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research. 2004; 43(3): 228-265. https://doi.org/10.1016/j.plipres.2003.10.002

Gómez-García M.R., Ochoa-Alejo N. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.) International Journal of Molecular Sciences. 2013; 14(9): 19025-19053. https://doi.org/10.3390/ijms140919025

Kotake-Nara E., Nagao A. Absorption and Metabolism of Xanthophylls. Marine Drugs. 2011; 9(6): 1024-1037. https://doi.org/10.3390/md9061024

Valadon L.R.G., Mummery R.S. Carotenoids of certain compositae flowers. Phytochemistry. 1967; 6(7): 983-988. https://doi.org/10.1016/S0031-9422(00)86050-1

Brichu R.D., Kot-Wasik A., Namieśnik J. et al. A comparative study of the molecular lipophilcity indices of vitamins A and E and of some precursors of vitamin A, estimated by HPLC and by different computation methods. Acta Chromatographica. 2009; 21: 237-250. https://doi.org/10.1556/achrom.21.2009.2.4

Rivera S., Canela R. Influence of Sam-ple Processing on the Analysis of Carotenoids in Maize. Molecules. 2012; 17(9): 11255-11268. https://doi.org/10.3390/molecules170911255

Khachik F., Beecher G.R., Goli M.B. Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure and Applied Chemistry. 1991; 63(1): 71-80. http://dx.doi.org/10.1351/pac199163010071

Gupta P., Sreelakshmi Y., Sharma R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods. 2015; 11: 5. https://doi.org/10.1186/s13007-015-0051-0

Ligor M., Kováčová J., Gadzała Kopciuch R.M. et al. Study of RP HPLC Retention Behaviours in Analysis of Carotenoids. Chromatographia. 2014; 77(15): 1047-1057. https://doi.org/10.1007/s10337-014-2657-1

Vallverdú-Queralt A., Martúnez-Huélamo M., Arranz-Martinez S. et al. Differences in the carotenoid content of ketchups and gazpachos through HPLC/ESI(Li(+) )-MS/MS correlated with their antioxidant capacity. Journal of the Science of Food and Agriculture. 2012; 92: 2043-2049. https://doi.org/10.1002/jsfa.5598

Ziegler J.U., Wahl S., Würschum T. et al. Lutein and Lutein Esters in Whole Grain Flours Made from 75 Genotypes of 5 Triticum Species Grown at Multiple Sites. Journal of Agricultural and Food Chemistry. 2015; 63(20): 5061-5071. https://doi.org/10.1021/acs.jafc.5b01477

Nakagawa K., Kiko T., Hatade K. et al. Development of a high-performance liquid chromatography-based assay for carotenoids in human red blood cells: application to clinical studies. Analytical Biochemistry. 2008; 381(1): 129-134. https://doi.org/10.1016/j.ab.2008.06.038

Wang Y., Zhang C., Dong B. et al. название статьи!. Frontiers in Plant Science. 2018; 9: 1499.

Nells H.J.C.F., De Leenheer A.P. Isocratic nonaqueous reversed-phase liquid chromatography of carotenoids. Analytical Chemistry. 1983; 55(2): 270-275. https://doi.org/10.1021/ac00253a021

Varzakas T., Kiokias S. HPLC Analy-sis and Determination of Carotenoid Pig-ments in Commercially Available Plant Extracts. Curr Res Nutr Food Sci. 2016; 4: 01-14. http://dx.doi.org/10.12944/CRNFSJ.4.Special-Issue1.01

Podunavac-Kuzmanović S.O., Jevrić L.R., Tepić A.N. et al. Reversed-phase HPLC retention data in correlation studies with lipophilicity molecular descriptors of carotenoids. Hemijska industrija. 2013; 67(6): 933-940. https://doi.org/10.2298/HEMIND121015010P

Dias M.G., Oliveira L., Camões F.G.F.C. et.al. Critical assessment of three high performance liquid chromatography analytical methods for food carotenoid quantification. Journal of Chromatography A. 2010; 1217(21): 3494-3502. https://doi.org/10.1016/j.chroma.2010.03.024

Katrangi N., Kaplan L.A., Stein E.A. Separation and quantitation of serum betacarotene and other carotenoids by high per-formance liquid chromatography. Journal of Lipid Research. 1984; 25(4): 400-406.

Li S., Tang X., Lu Y. et al. Journal of Separation Science. 2021; 44: 539-548.

Baharin B.S., Abdul Rahman K., Abdul Karim M.I. et al. Separation of palm carotene from crude palm oil by adsorption chromatography with a synthetic polymer adsorbent. Journal of the American Oil Chemists’ Society. 1998; 75: 399-404. https://doi.org/10.1007/s11746-998-0058-z

Takaichi S. Photo-synthesis Research. 2000. Vol. 65. pp. 93–99.

de las Rivas J., Abadia A., Abadia J. A New Reversed Phase-HPLC Method Resolving All Major Higher Plant Photosynthetic Pigment. Plant Physiology. 1989; 91(1): 190-192. https://doi.org/10.1104/pp.91.1.190

Claessens H.A., van Straten M.A., Cramers C.A. et al. Comparative study of test methods for reversed-phase columns for high-performance liquid chromatography. Journal of Chromatography A. 1998; 826: 135-156.

Vyňuchalová K. Selectivity Tests of Stationary Phases for Reversed-Phase HPLC. Analytical Letters. 2011; 44(9): 1640-1662. https://doi.org/10.1080/00032719.2010.520393

Colin H., Krstulović A.M., Gonnord M.-F. et al. Investigation of selectivity in reversed-phase liquid chromatography-effects of stationary and mobile phases on retention of homologous series. Chromatographia. 1983; 17: 9-15. https://doi.org/10.1007/BF02265101

Rodriguez-Amaya D.B. A Guide to Carotenoid Analysis in Foods. ILSI Human Nutrition Institute. One Thomas Circle, NW, Washington DC. 20005-5802. 2001. 64 p.

Dejneka V.I., Sorokopudov V.N., Dejneka L.A. et al. Issledovanie cvetkov tagetes sp. kak istochnika lyuteina. Khimiko-farmacevticheskij zhurnal. 2007; 41(10): 30-32.

Dejneka V.I., Sorokopudov V.N., Dejneka L.A. et al. Issledovanie plodov physalis alkekengi l. kak istochnika ksantofillov. Khimiko-farmacevticheskij zhurnal. 2008; 42(2): 36-37.

Dejneka V.I. Distribution or adsorption: the major dilemma in reversed-phase HPLC. Russ. J. Phys. Chem. 2008; 82: 902-905. https://doi.org/10.1134/S003602440806004630

Deineka, V.I., Oleinits, E.Y., Blinova, I.P. et al. Selectivity of the Separation of Isomeric Chlorogenic Acids under the Conditions of Reversed-Phase HPLC. J Anal Chem. 2019; 74: 778-783. https://doi.org/10.1134/S1061934819080057

Nagata I., Katoh K. Ternary Liquid-Liquid Equilibria for Acetonitrile-Ethanol-Cyclohexane and Acetonitrile-2-Propanol-Cyclohexane. Thermochimica Acta. 1980; 39: 45-62.

Bunea A., Socaciu C., Pintea A. Xanthophyll Esters in Fruits and Vegetables. Notulae Botanicae Horti Agrobotanici ClujNapoca. 2014; 42(2): 310-324. https://doi.org/10.15835/nbha4229700

Tatevskij V.M. Stroenie molekul. M., Himiya, 1977. 512 p. (In Russ.)

Nowotnik D.P., Narra R.K. A Comparison of Methods for the Determination of Dead Time in a Reversed-Phase High-Performance Liquid Chromatography System Used for the Measurement of Lipophilicity. Journal of Liquid Chromatography. 1993; 16(18): 3919-3932. https://doi.org/10.1080/10826079308019677

Rimmer C.A., Simmons C.R., Dorsey J.G. The measurement and meaning of void volumes in reversed-phase liquid chromatography. Journal of Chromatography A. 2002; 965(1-2): 219-232. https://doi.org/10.1016/S0021-9673(02)00730-6

Zenkevich I.G. Using Recurrent Dependences to Control, Adjust, and Recover Values of the Physicochemical Properties of Organic Compounds. Russ. J. Phys. Chem. 2021; 95: 894-901. https://doi.org/10.1134/S0036024421040294

Dejneka V.I., Dejneka L.A., Turtygin A.V. Method of the relative retention anal-ysis: reversed-phase hplc of triglycerides. Sorbtsionnye i khromatograficheskie protsessy. 2008; 8(3): 465-477. (In Russ.)

Dejneka V.I., Lapshova M.S., Zaharenko E.V. et al. Features of separation on polymeric reversed phase for two classes of higher saturated fatty acids esters. Russ. J. Phys. Chem. 2013; 87: 1912-1915. https://doi.org/10.1134/S0036024413110071

Young J.C., Abdel-Aal E.-S.M, Rabalski I. et al. Journal of Agricultural and Food Chemistry. 2007; 55: 4965-4972.

Turtygin A.V., Dejneka V.I., Dejneka L.A. et al. Opredelenie monoacetil-diacilglicerolov masel semyan rastenij semejstva celastraceae, Analitika i kontrol'. 2012; 16(1): 91-95. (In Russ.)

Published
2022-11-03
How to Cite
Deineka, V. I., Burzhinskaya, T. G., & Deineka, L. A. (2022). Separation of carotenoids during reversed-phase HPLC: retention mechanism and methylene selectivity on a monomeric stationary phase. Sorbtsionnye I Khromatograficheskie Protsessy, 22(4), 393-405. https://doi.org/10.17308/sorpchrom.2022.22/10568