Studying the sorption of Sr and Ni ions from natural water on a ferritized zeolite-containing tuff of the Kholinskoe deposit

  • Valentina A. Nikashina Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences of the Russian Academy of Sciences, Moscow, Russian Federation
  • Inna B. Serova Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences of the Russian Academy of Sciences, Moscow, Russian Federation
  • Tatyana G. Kuzmina Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences of the Russian Academy of Sciences, Moscow, Russian Federation
  • Vladislav E. Ognev Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences of the Russian Academy of Sciences, Moscow, Russian Federation
Keywords: ferritized zeolite-containing tuff, strontium sorption, nickel sorption, river water, artesian water, sorption isotherms and kinetics, effect of the pH

Abstract

. The purpose of our study was to assess the sorption properties of a ferritized zeolite-containing tuff (FZCT) of the Kholinskoe deposit (Republic of Buryatia, the Chita region) towards Sr2+ and Ni2+ ions, i.e. elements of different nature, from solutions simulating the mineralisation of natural water. We determined the chemical and physical composition of the studied samples of ZCT and FZCT. Isotherms were obtained for the sorption of Sr2+ from the model solution of drinking water on a natural and ammonium forms of ZCT and FZCT. We also studied the kinetics of sorption of Sr2+ on ZCT and FZCT from the surface drinking water and output curves of Sr2+ from the model solution of artesian water. FZCT appeared to be significantly more effective.

We also investigated the sorption of Ni2+ as an ion having the smallest sorption activity of all the heavy transition metals from a 0.003 n solution of CaCl2 (model solution of drinking water) under equilibrium and non-equilibrium conditions with рН=6.1-6.7. The study demonstrated that under these conditions the sorption of Ni2+ is low and the output curves of Ni2+ are of an external diffusion nature. Apparently, Ni2+ interacts only with ОH-groups of magnetite and its derivatives (maghemite, etc.) under the said conditions. When рН=8.0-8.3, the sorption of Ni2+ increases dramatically.

Downloads

Download data is not yet available.

Author Biographies

Valentina A. Nikashina, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences of the Russian Academy of Sciences, Moscow, Russian Federation

Senior Researcher, PhD (Chemistry), the sorption methods laboratory, Vernadsky Institute of Geochemistry and Analytical Chemistry RAN, Moscow, Russian Federation; e-mail: nikashina_v@mail.ru; nikashina@geokhi.ru

Inna B. Serova, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences of the Russian Academy of Sciences, Moscow, Russian Federation

Researcher, the sorption methods laboratory, Vernadsky Institute of Geochemistry and Analytical Chemistry RAN, Moscow, Russian Federation

Tatyana G. Kuzmina, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences of the Russian Academy of Sciences, Moscow, Russian Federation

Senior Researcher, PhD (Phys.-Math.), Сentral laboratory of substances analysis, Vernadsky Institute of Geochemistry and Analytical Chemistry RAN, Moscow, Russian Federation

Vladislav E. Ognev, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences of the Russian Academy of Sciences, Moscow, Russian Federation

Researcher Сentral laboratory of substances analysis, Vernadsky Institute of Geochemistry and Analytical Chemistry RAN, Moscow, Russian Federation

References

Gubin S.P., Koksharov YU.A., Khomutov G B., Yurkov G.YU. Magnitnye nanochasticy : metody polucheniya, stroenie i svojstva. Uspekhi khimii. 2005; 74(6): 539-574. (In Russ.)

Egunova O.R., Konstantinova T.A., Shtykov S.N. Magnitnye nanochasticy magnetita v razdelenii i koncentrirovanii. Izv.Sarat. un-ta .Nov.ser. Khimiya. Biologi-ya. Ehkologiya. 2014; 14(4): 27-34. (In Russ.)

Cornell R.M., Schwertmann U. The iron oxides: structure, properties reactions, occurrences and uses. Wein-heim(Germany). Wiley-VCH. 2003. 664 p.

Jolstera R. Gunneriusson L., Holmgren A. Surface complexation model-ing of Fe3O4-H+ and magnesium (II) sorp-tion ontomaghemite and magnetite. J.Colloid. Interf. Sci. 2012; 386: 260-267.

Ambashta R.D., Sillanpaa M. Water purification using magnetic assistance: A review. J. of Hazardous Materials. 2010; 180: 38-49.

Du G., Li Zh., Hanson R., Li Zh., Luok S., Hoepper N., Wei-The-Jiang. Cr(VI) retention and transport through Fe(III)-coated natural zeolite. J. Hazardous Materials. 2012; 221-222.

Behrens S. Preparation of functional magnetic nanocomposites and hybrid mate-rials: recent progress and future directions. Nanoscale. 2011; 3: 877-892.

Xu P., Zeng G.M., Huang D.L., Feng C.L., Hu S., Zhao M.H., Lai C., Wei Z., Huang C., Xie G.X., Liu Z.F. Use of iron oxide nanomaterials in wastewater treat-ment: A review. Sci.Total Environ. 2012; 424: 1-10.

Kiseleva M.S., Pryazhnikov D.V., Kubrakova I.V. Magnitnyj sorbent s me-zoporistoj obolochkoj dlya odnovremen-nogo koncentrirovaniya ehkotoksikantov razlichnoj prirody. ZH. A KH. 2018; 73(1): 14-21. (In Russ.)

Fan L., Luo Ch., Lv Zh., Lu F., Qiu H. Preparation of magnetic modified chi-tosan and adsorption Zn2+ from aqueous solutions. Colloid and Surfaces B: Bioin-terfaces. 2011; 574-581.

Sankevich N.A., Bozhko O.V., Mechkovskij S.A. Osobennosti kationnogo obmena na gibridnykh sorbentakh silikagel'-magnetit. Sorbtsionnye I khroma-tograficheskie protsessy. 2006; 6(6): 954-959. (In Russ.)

Nikashina V.A., Serova I.B., Ruden-ko B.A. Kompoziciya dlya prigotovleniya ferromagnitnogo ionoobmennika. Patent RF №94011364/26, 1994.

Serova I.B., Nikashina V.A. Ochist-ka pochv ot radionuklidov ceziya i stronciya ferromagnitnymi prirodnymi i sinteticheskimi ceolitami. Trudy Mezhd. Konf. «Radioaktivnost' posle yadernykh vzryvov i avariJ»,Gidrometeoizdat. Sankt-Peterburg. 2006; 455-460.

Oliveira L.C.A., Petkowicz D.I., Smaniotto A., Pergher S.B.C. Magnetic ze-olites: a new adsorbent for removal of me-tallic contaminants from water. Water Re-search. 2004; 38; 3699-3704.

Huang Y., Wang W., Feng Q., Dong F. Preparation of magnetic clinoptilo-lite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: Kinetic, equi-librium, and thermodynamic Studies. J.of Saudi Chemical Society. 2017; 21: 58-66.

Nikashina V.A., Novakova A.A., Dem'yanenko A.V., Serova I.B., Ka-tasonova O.N. Issledovanie fiziko-khimicheskikh svojstv ceolitsoderzhash-chikh tufov, modificirovannykh magnet-itom. Geokhimiya. 2021; 66(1): 81-88.

Nikashina V.A., Serova I.B., Kuzmi-na T.G., Lihareva N.I., Petrov O.E., Grom-yak I.N. Kinetics of Sr2+ sorption on clinop-tilolite-containing tuffs of different depos-its from the surface drinking water. Sorbtsionnye i khromatograficheskie protsessy. 2017; 17(6): 886-892. https://doi.org/10.17308/sorpchrom.2017.17/449 (In Russ.)

Published
2022-12-20
How to Cite
Nikashina, V. A., Serova, I. B., Kuzmina, T. G., & Ognev, V. E. (2022). Studying the sorption of Sr and Ni ions from natural water on a ferritized zeolite-containing tuff of the Kholinskoe deposit. Sorbtsionnye I Khromatograficheskie Protsessy, 22(5), 630-637. https://doi.org/10.17308/sorpchrom.2022.22/10684