The study of in silico features and mechanisms of cellulase adsorption from Aspergillus niger on synthetic polymers
Abstract
Currently, the pulp and paper industry is predominantly based on the chemical hydrolysis of cellulose, which results in a high environmental burden. The severity of the problem can be reduced by the use of immobilized cellulase. In addition, cellulases have the ability to convert lignocellulosic material into fermentable sugars used as substrates for the formation of biofuels.
A number of ion-exchange resins and fibres, as well as chitosan derivatives, have been proposed for the preparation of composite biocatalysts based on cellulase. It has been established that synthetic ion-exchange resins AV-17-2P, KU-2, fibres VION KN-1, VION AN-1, as well as carboxymethyl chitosan and chitosan sulphate can be used as carriers for the immobilization of cellulase from Aspergillus niger (PDB ID: 5I77).
The data were obtained by molecular docking using the AutoDock Vina program, analysed using LigPlot, visualization was carried out using the Maestro 10.3 program. The parameters of tunnels, pores, and interior cavities were calculated using the MOLE program.
As a result of the study, it was found that all the studied carriers for immobilization bind in the region of the active site of the enzyme, which, on the one hand, can lead to its screening for the substrate, but, on the other hand, the effect of stabilizing the spatial structure of the cellulase active site can occur.
After adsorption on most of the studied carriers, the cellulase molecule acquired a more compact structure, as was evidenced by a decrease in the number of tunnels or their complete absence during the formation of the enzyme complex with VION AN-1 and chitosan sulphate. The only exception was KU-2, immobilization on which led to an increase in the number and length of tunnels in the enzyme structure.
There were no pores in the cellulase molecule both before and after immobilization. The configuration and volume of interior cavities did not change when cellulase had bound to ion-exchange materials, while adsorption on chitosan derivatives reduced their volume, and after sorption on chitosan sulphate, one of the internal cavities disappeared.
Downloads
References
Orencio-Trejo M., la Torre-Zavala D., Rodriguez-Garcia A., Avilés-Arnaut H., Gastelum-Arellanez A. Assessing the performance of bacterial cellulases: the use of Bacillus and Paenibacillus strains as enzyme sources for lignocellulose saccharification. BioEnergy Research. 2016; 9(4): 1023-1033. https://doi.org/10.1007/s12155-016-9797-0
Jørgensen H., Pinelo M. Enzyme recycling in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining. 2017; 11(1): 150-167. https://doi.org/10.1002/bbb.1724
Kubicek C.P., Kubicek E.M. Enzymatic deconstruction of plant biomass by fungal enzymes. Current opinion in chemical biology. 2016; 35: 51-57. https://doi.org/10.1016/j.cbpa.2016.08.028
Silva C.O., Vaz R.P., Filho E.X. Bringing plant cell wall‐degrading enzymes into the lignocellulosic biorefinery concept. Biofuels, Bioproducts and Biorefining. 2018; 12(2): 277-289. https://doi.org/10.1002/bbb.1832
Jeoh T., Cardona M.J., Karuna N., Mudinoor A.R., Nill J. Mechanistic kinetic models of enzymatic cellulose hydrolysis – a review. Biotechnology and bioengineering. 2017; 114(7): 1369-1385. https://doi.org/10.1002/bit.26277
Rahikainen J.L., Evans J.D., Mikander S., Kalliola A., Puranen T., Tamminen T., Kruus K. Cellulase–lignin interactions – the role of carbohydrate-binding module and pH in non-productive binding. Enzyme and microbial technology. 2013; 53(5): 315-321. https://doi.org/10.1016/j.enzmictec.2013.07.003
Xia L., Cen P. Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochemistry. 1999: 34(9): 909-912. https://doi.org/10.1016/S0032-9592(99)00015-1
Belghith H., Chaabouni S. E., Gargouri A. Stabilization of Penicillium occitanis cellulases by spray drying in presence of maltodextrin. Enzyme and Microbial Technology. 2001; 28(2-3): 253-258. https://doi.org/10.1016/s0141-0229(00)00322-7
Galante Y.M., De Conti A., Monteverdi R. Application of Trichoderma enzymes in the textile industry. Trichoderma & Gliocladium. 1998; 2: 311-325.
Kvietok L.L., Trinh T., Hollingshead J.A. US Patent. no. 5445747, 1995.
Galante Y.M., Formantici C. Enzyme applications in detergency and in manufacturing industries. Current organic chemistry. 2003; 7(13): 1399-1422. https://doi.org/10.2174/1385272033486468
Bedford M.R., Morgan A.J., Fowler T., Clarkson K.A., Ward M.A., Collier K.D., Larenas E.A. US Patent. no. 6562340, 2003.
Akhtar M. Biochemical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora, Holzforschung. 1994; 48: 199-202. https://doi.org/10.1515/hfsg.1994.48.3.199
Oksanen T., Pere J., Buchert J., Viikari L. The effect of Trichoderma reesei cellulases and hemicellulases on the paper technical properties of never-dried bleached kraft pulp, Cellulose. 1997; 4(4): 329-339. https://doi.org/10.1023/A:1018456411031
Prasad D.Y., Heitmann J.A., Joyce T.W. Enzyme deinking of black and white letterpress printed newsprint waste. Progress in paper recycling. 1992; 1(3); 21-30.
Pere J., Paavilainen J., Siikaaho M., Cheng Z., Viikari L. Potential use of enzymes in drainage control of nonwood pulps. 1996, Proceedings, 3rd International Non-wood fiber pulping and papermaking conference, Peter Lang Publishing Group., 421-430.
Franks N.E., Bazewicz S.E., Holm H.C. US Patent No. 5525193, 1996.
Kubicek C.P. Applications of Trichoderma reesei enzymes in the pulp and paper industry. Trichoderma and Gliocladium. 1998; 2: 357-378.
Salkinoja-Salonen M., US Patent No. 4980023, 1990.
Hsu J.C., Lakhani N.N., US Patent No. 6413363, 2002.
Sharyo M., Sakaguchi H., Ohishi M., Takahashi M., Kida K., Tamagawa H., Schulein M. Franks N., US Patent No. 6468391, 2002.
Martin J.W., US Patent No. 4092175, 1978.
Deshpande V., Keskar S., Mishra C., Rao M. Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa. Enzyme and microbial technology. 1986; 8(3): 149-152. https://doi.org/10.1016/0141-0229(86)90103-1
Sudha Rani K., Swamy M.V., Seenayya G. Increased ethanol production by metabolic modulation of cellulose fermentation in Clostridium thermocellum. Biotechnology letters. 1997; 19(8): 819-823. https://doi.org/10.1023/A:1018312931542
Kovaleva T.A., Kholyavka M.G., Artyukhov V.G. Characteristics of inulinases: methods for regulation and stabilization of their activity. Biotechnology in Russia. 2012; 1: 43-63.
Artyukhov V.G., Kholyavka M.G., Kovaleva T.A. Structural and functional properties of inulinases. Ways to regulate their activity. Biophysics. 2013; 58(4): 493-501.
Holyavka M.G., Kayumov A.R., Baydamshina D.R., Koroleva V.A., Trizna E.Y., Trushin M.V., Artyukhov V.G. Efficient fructose production from plant extracts by immobilized inulinases from Kluyveromyces marxianus and Helianthus tuberosus. International journal of biological macromolecules. 2018; 115: 829-834. https://doi.org/10.1016/j.ijbiomac.2018.04.107
Kholyavka M.G., Kovaleva T.A., Khrupina E.A., Volkova S.A., Artyukhov V.G. Design of a heterogeneous enzymatic preparation on the basis of immobilized inulinase from Helianthus tuberosus. Biotechnology in Russia. 2012; 6: 31-41.
Ol'shannikova S.S., Malykhina N.V., Lavlinskaya M.S., Sorokin A.V., Kholyavka M.G., Artyukhov V.G. Razrabotka biokatalizatora na osnove papaina, stabilizirovannogo v kompleksakh s khitozanom i ego proizvodnymi: karboksimetilkhitozanom i N-(2-gidroksi)propil-3-trimetilammonii khitozanom. Biotekhnologiya. 2022; 38(1): 39-46.
Gorbacheva I.I., Skorikova E.E., Vikhoreva G.A., Gal'braikh L.S., Babievskii K.K. Stroenie i svoistva sul'fata khitozana. VMS. Seriya A. 1991; 9: 1899-1904.
Sakibaev F.A., Holyavka M.G., Artyuhov V.G. Certificate of state registration of the computer program. No 2019616471, 2019.
Yan J., Liu W., Li Y., Lai H.L., Zheng Y., Huang J.W., Guo R.T. Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1, 4-β-endoglucanase. Biochemical and Biophysical Research Communications. 2016; 475(1): 8-12. https://doi.org/10.1016/j.bbrc.2016.05.012
Selemenev V.F., Rudakov O.B., Eliseeva T.V., Voronyuk I.V., Karpov S.I., Belanova N.A., Mironenko N.V., Sinyaeva L.A. Mezhmolekulyarnye vzaimodejstviya i obrazovanie peresyshchennyh rastvorov aminokislot v faze vysokoosnovnogo anionita. Soobshchenie 1. Vestnik VGU. Seriya: Himiya. Biologiya. Farmaciya. 2021;1: 20-35. (In Russ.)
Janin J., Chothia C., The structure of protein-protein recognition sites. Journal of Biological Chemistry. 1990; 265(27): 16027-16030.
Zvelebil M.J.J.M., Thornton J.M., Peptide-protein interactions: an overview. Quarterly reviews of biophysics. 1993; 26(3): 333-363.
Petrek M., Otyepka M., Banas P., Kosinova P., Koca J., Damborsky J. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC bioinformatics. 2006; 7(1): 316.
Chaloupkova R., Sykorova J., Prokop Z., Jesenska A., Monincova M., Pavlova M., Tsuda M., Nagata Y., Damborsky J., Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. Journal of Biological Chemistry. 2003; 278(52): 52622-52628.