Features of sorption and the mass transfer of hydrophilic substances through hydrophobic isotactic polypropylene
Abstract
Recently, a lot of attention has been paid to the study of the modification of industrial polymers in the literature. Modified systems and polymer composite materials based on large-tonnage polymers make it possible to effectively expand the brand range of polymer materials and significantly improve their technological and operational properties, create new types of products for new areas of application. In technical terms, isotactic polypropylene (PP), which, in particular, showed good results in the pervaporation process during the separation of a mixture of toluene- n-butanol is promising. It is widely used as one of the components of composite membranes. In this work, the research of sorption and mass transfer in the pervaporation process of two classes of sorbates on membranes made of modified isotactic industrial hydrophobic PP brand 01030 (GOST 26996-86) was continued. The modification was carried out processing PP films with liquid alkanes with an increasing number of carbon atoms С6-С9 in several ways, which we called routes. Their essence is swelling of PP in one sorbate (alkanes) followed by swelling (immediately or after drying) in another sorbate (acetone, isopropanol). The sorption value of hydrophilic (acetone and isopropanol) depends both on the route of modification and on the number of carbon atoms in the alkane molecule causing a change in the polymer structure. It was shown that the modification of a PP film with alkanes led to an increase in the permeability of acetone and isopropanol during pervaporation. The greatest increase in the permeability value was achieved when the film was treated with hexane along all routes. The process of mass transfer was affected by the method of membrane modification: surface modification, when modification was carried out using pervaporation unit and alkanes were sorbed on the side of the membrane facing the liquid, and volumetric, in which the membrane swells in alkane in a free state outside the pervaporation unit. In the case of volume modification, the membrane structure changed throughout the thickness, which led to an increase in the free volume of the polymer and an increase in the permeability of acetone and isopropanol. An increase in temperature during pervaporation also led to an increase in the permeability of the studied solvents.
Downloads
References
Ozerin A.N. Novye tipy materialov na osnove krupnotonnazhnyh polimerov.”Polimery v strategii nauchno-tehnicheskogo razvitija RF “Polimery-2020”, sbornik tezisov Vos'moj Vserossijskoj Karginskoj konferencii, 09-13 nojabrja 2020 g., M. Obshhestvo s ogranichennoj otvetstvennost'ju “MESOL”, 2020, P 42. (In Russ.)
Ljubimov A.G., Prokopchuk N.R., Manulenko A.F. Osobennosti modifikacii polipropilena dlja izgotovlenija plenochnoj niti. Himija i tehnologija organicheskih veshhestv, materialov i izdelij. Trudy BGTU. 2011; 4: 59-63. (In Russ.)
Abdukarimova S.A., Bozorova N.H., Turaev Je.R. Osobennosti modifikacii polipropilena. Universum: tehnicheskie nauki, jelektron. nauchn. Zhurn. 2022; 1(94). URL: https://7universum.com/ru/tech/archive/item/12949. (In Russ.)
Kravec L.I., Dmitriev S.N., Apel P.Yu. Polipropilenovye trekovye membrany dlya mikro- i ultrafiltracii himicheski agressivnyh sred. I. Travlenie trekov vysokoenergetichnyh ionov v polipropilene, Membrany, 2000, Nо 7, рр. 13-28.
Dai Z.-W., Wan L.-S., Xu Z.-K. Glycopolymer-filled microporous polypropylene membranes for pervaporation dehydration. J. of Membrane Science. 2010; 348(1-2): 245-251. https://doi.org/10.1016/j.memsci.2009.11.007
Shahverdi M., Baheri B., Rezakazemi M., Motaee E., Mohammadi T. Pervaporation Study of Ethylene Glycol Dehydration Through Synthesized (PVA-4A)/Polypropylene Mixed Matrix Composite Membranes. Polymer Engineering and Science. 2013; 53(7): 1487-1493. https://doi.org/10.1002/PEN.23406
Strusovskaja N.L., Matushkina N.N., Vlijanie modifikacii izotakticheskogo polipropilena na ego transportnye svojstva. Sorbtsionnye i khromatograficheskie protsessy. 2020; 20(2): 335-342. https://doi.org/10.17308/sorpchrom.2020.20/2870 (In Russ.)
Ageev E.P., Strusovskaja N.L., Dolgova A.A. Vlijanie sorbcionnoj predystorii i processa krejzovanija na nabuhanie plenok alifaticheskih poliamidov. Sorbtsionnye i khromatograficheskie protsessy. 2011; 11(2): 211-219. (In Russ.)
Smirnov A.V., Fedorov B.A., Temnov D.Je. Fomicheva E.E. Strukturnye i jelektretnye svojstva polipropilena s razlichnym soderzhaniem amorfnogo dioksida kremnija. Nanosistemy: Fizika, himija, matematika. 2012; 3(2): 65-72. (In Russ.)
Stekol'shhikov M.N. Uglevodorodnye rastvoriteli: Svojstva, proizvodstvo, primenenie: Spravochnoe izd. M. Himija Publ.; 1986. 120 p. (In Russ.)
Rabinovich V.A., Havin Z.Ja. Kratkij himicheskij spravochnik. Leningrad, Himija Publ.; 1977. 376 p. (In Russ.)
Himicheskaja jenciklopedija. M. Sovetskaja jenciklopedija Publ.; 1988; 1. 625 p. (In Russ.)
Kratkij spravochnik fiziko-himicheskih velichin. Izd. 8. Pod red. A.A. Ravdelja i A.M. Ponomarevoj. Leningrad. Himija Publ.; 1983. 231 p. (In Russ.)
Kondratov A.P., Zhuravleva G.N. Fizika i himija materialov i tehnologicheskih processov. M. MGUP imeni Ivana Fedorova Publ.; 2016. 52 p. (In Russ.)
Filippov V.V. Teploobmen v himicheskoj tehnologii. Teorija. Osnovy proektirovanija: ucheb. Posobie. Samara. Samar. gos. tehn. Un-t Publ.; 2014. 197 p. (In Russ.)
Strusovskaja N.L., Ageev E.P. Rol' sorbcionnoj predystorii v nabuhanii poliamidnyh plenok. Sorbtsionnye i khromatograficheskie protsessy. 2015; 15(5): 600-606. (In Russ.)
Ageev E.P., Matushkina N.N., Strusovskaja N.L. Osobennosti povedenija plenok izotakticheskogo polipropilena v processe pervaporacii. Kolloidnyj zhurnal. 2018; 80: 41-46. https://doi.org/10.7868/S0023291218010032 (In Russ.)
Krizhanovskaja O.O., Sinjaeva L.A., Karpov S.I., Selemenev V.F., Borodina E.V., Rjossner F. Kineticheskie modeli pri opisanii sorbcii zhirorastvorimyh fiziologicheski aktivnyh veshhestv vysokouporjadochennymi neorganicheskimi kremnijsoderzhashhimi materialami. Sorbtsionnye i khromatograficheskie protsessy. 2014; 14(5): 784-794. (In Russ.)
Schott H. Kinetics of swelling of polymers and their gels. J. Pharmaceutical Sci. 1990; 5(81): 467-470.
Hu C.-C., Fu Y.-J., Qui H.- Z., Lee K.-R., Lai J.-Y. Effects of residual solvent on gas separation properties of polyimide membranes. Separation and Purification Technology. 2008; 62: 175-182. https://doi.org/10.1016/j.seppur.2008.01.008
Guan R., Dai H., Li C., Liu J., Xu J. Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. J. Membrane Sci. 2006; 277: 148-156. https://doi.org/10.1016/j.memsci.2005.10.025
Urjadov V.G., Arist.ova N.V. Oficerov E.N. Chislennaja harakteristika strutktury organicheskoj molekuly. Chast' 10. Opredelenie chislennoj harakteristiki struktury alkanov normal'nogo stroenija po jeksperimental'nym dannym. Butlerovskie soobshhenija. 2010; 19(1): 66-73. (In Russ.)
Zevackij Ju.Je. Model' sol'vatacii i associacii v rastvorah nejelektrolitov. Zhurnal obshhej himii. 2019; 89(11): 1724-1731. https://doi.org/10.1134/S0044460X19110131 (In Russ.)
Lirova B.I., Ljutikova E.A., Vasil'eva N.V. et al. Vlijanie napolnitelja na processy migracii iz plastificirovannyh kompozicij na osnove polivinilhlorida. Zhurnal prikladnoj himii. 2008; 81(2): 308-313. (In Russ.)
Kostina Yu.V., Bondarenko G.N., Alent'ev A.Ju., Jampol'skij Ju.P. Izmenenie struktury i gazorazdelitel'nyh svojstv polijefirimidov pod dejstviem hloroforma. Vysokomolekuljarnye soedinenija A. 2006; 48(1): 41-48. (In Russ.)
Puljalina A.Ju., Polockaja G.A., Kaljuzhnaja L.M. et al. Sorbcija i transport vodnyh rastvorov izopropanola v kompolzitah iz poliimida i poli(anilin-SO-antranilovoj kisloty). Zhurnal prikladnoj himii. 2011; 84(5): 810-817. (In Russ.)
Darvishmanesh S., Degreve J., van der Bruggen B. Physicochemical characterization of transport in nanosized membrane structures. a European journal of chemical physics and physical chemistry. 2010; 11(2): 404-411. (In Russ.)
Volkov B.B. Razdelenie zhidkosti ispareniem cherez polimernye membrany, Izvestija Akademii nauk, serija himicheskaja. 1994; 2: 208-218. (In Russ.)
Mironjuk A.V., Pridatko A.V., Sivolapov P.V., Sviderskij V.A. Osobennosti ocenki smachivanija polimernyh poverhnostej. Vostochno-Evropejskij zhurn. peredovyh tehnologij, Tehnologii organicheskih i neorganicheskih veshhestv. 2014; 1(6(67)): 23-26. (In Russ.)
Timakova K.A., Tarasov A.V., Fedotov Ju. A., Lepeshin S.A., Panov Ju.T., Modifikacija polimernyh plenok, pokrytij i membrane. Membrany i membrannye tehnologii. 2012; 2(2): 74-84. (In Russ.)
Hvang S.T., Kammermejer K. Membrannye processy razdelenija. M., Himija Publ.; 1981. 464 p. (In Russ.)
Dytnerskij Ju.I. Membrannye processy razdelenija zhidkih smesej. M. Himija Publ.; 1975. 232 p. (In Russ.)