HPLC-MS/MS determination of amoxicillin in blood plasma using derivatization
Abstract
Amoxicillin (AMOX) is an antibiotic widely used both in general medicine and veterinary medicine that is why it is very important to enable its reliable determination in biological matrices, such as blood plasma. AMOX is an unstable analyte, its degradation in solutions and matrices is influenced by many parameters: temperature, the nature of the solvent, the pH of the medium, salts or acids added to the extracts. These factors impair sample preparation and the quantification of amoxicillin in complex matrices since analyte stability plays an important role in the pharmacokinetic study of a large number of samples or a long-term analysis. The developed method allows reliably determining amoxicillin in blood plasma by HPLC-MS/ MS. It involves increasing amoxicillin stability in blood plasma extracts and increasing the retention time on reverse-phase sorbents by derivatisation with a secondary cyclic amine (pyrrolidine). The developed methodology considers the influence of many factors on the completeness of derivatisation and extraction. For this, we varied the pH of the extracting phosphate buffer, the added volume of pyrrolidine, the derivatisation time, and the pH of the extract before it was purified by solid-phase extraction. The method's conditions were optimised to achieve a good recovery of at least 80%. During HPLC-MS/MS analysis, the detectable substance was a derivative, with a molar mass of 436 g/mol. The final analyte was detected in the negative ionisation mode with m/z=435.3, during fragmentation it produced product ions with m/z=263.1, 357.2, and 340.1. Derivatisation allowed improving the retention of the determined analyte on the reverse-phase sorbent. Chromatographic separation took 9 minutes and took place in a gradient elution mode. At the same time, amoxicillin in blood plasma extracts in the autosampler degraded by more than 20% in 24 hours and its derivative remained stable under these conditions.
Downloads
References
Komarov A.A., Engashev S.V., Engasheva E.S., Udavliev D.I., Egorov M.A., Usha B.V., Selimov R.N., Glamazdin I.G. Amoxicillin and Acidic Acid: Effec-tive Medicines for Animal Health Protec-tion. Storage and processing of Farm Products. 2021; 4; 98-117. https://doi.org/10.36107/spfp.2021.259
De Marco B.A., Natori J.S.H., Fan-elli S., Tótoli E.G., Salgado H.R.N. Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach. Critical Reviews in Analytical Chemistry. 2017; 47: 267-277. https://doi.org/10.1080/10408347.2017.1281097
Chen L., Wang B., Diao Z., Zhao M., Xie K., Zhang P., Wang, J. Develop-ment and Validation of an HPLC-ESI/MS/MS Method for the Determination of Amoxicillin, Its Major Metabolites, and Ampicillin Residues in Chicken Tissues. Molecules. 2019; 24(A): 2652. https://doi.org/10.3390/molecules24142652
De Baere S., Cherle M., Baert K., De Backer P. Quantitative Analysis of Amoxycillin and Its Major Metabolites in Animal Tissues by Liquid Chromatography Combined with Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 2002; 74: 1393-1401. https://doi.org/10.1021/ac010918o
De Baere S., Wassink P., Croubels S., Boever S.D., Baert K., Backer P.D. Quantitative liquid chromatographic-mass spectrometric analysis of amoxycillin in broiler edible tissues. Analytica Chimica Acta. 2005; 529: 221-227. https://doi.org/10.1016/j.aca.2004.09.069
Delis G., Batzias G., Kounenis G., Koutsoviti-Papadopoulou M. Application and validation of a LC/fluorescence meth-od for the determination of amoxicillin in sheep serum and tissue cage fluid. J. Pharm. Biomed. Anal. 2009; 49: 375-380. https://doi.org/10.1016/j.jpba.2008.10.019
Purohit T.J., Wu Z., Hanning S.M. Simple and reliable extraction and a vali-dated high performance liquid chromatographic assay for quantification of amoxi-cillin from plasma. J. Chromatogr. A. 2020; 1611(A): 460611. https://doi.org/10.1016/j.chroma.2019.460611
Liu C., Wang H., Jiang Y., Du Z. Rapid and simultaneous determination of amoxicillin, penicillin G, and their major metabolites in bovine milk by ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B. 2011; 879; 533-540. https://doi.org/10.1016/j.jchromb.2011.01.016
Lim J.W., Jung M.H., Jung S.J., Kim D.H., Park K.H., Kang S.Y. The efficacy of amoxicillin sodium against strepto-coccosis in cultured olive flounder Paralichthys olivaceusand its pharmacokinetics. J. Vet. Pharmacol. Therap. 2016; 40; 77-87. https://doi.org/10.1111/jvp.12321
Reyns T., De Boever S., De Baere S., De Backer P., Croubels S. Tissue Depletion of Amoxicillin and Its Major Metabo-lites in Pigs: Influence of the Administra-tion Route and the Simultaneous Dosage of Clavulanic Acid. J. Agric. Food Chem. 2008; 56: 448-454. https://doi.org/10.1021/jf072398p
Zhang C., Zeng J., Xiong W., Zeng Z. Rapid determination of amoxicillin in porcine tissues by UPLC-MS/MS with in-ternal standard. J. of Food Composition and Analysis. 2020; 92(A): 103578. https://doi.org/10.1016/j.jfca.2020.103578
Anfossi P., Zaghini A., Grassigli G., Menotta S., Fedrizzi G. Relative oral bioa-vailability of microgranulated amoxicillin in pigs. J. Vet. Pharmacol. Therap. 2002; 25; 329-334. https://doi.org/10.1046/j.1365-2885.2002.00428.x
Ozdemir Z., Tras B., Uney K., Eser Faki H., Besoluk T.M. Determination of milk/plasma ratio and milk and plasma pharmacokinetics of amoxicillin after in-tramuscular administration in lactating cows. J. Vet. Pharmacol. Therap. 2019; 42: 45-51. https://doi.org/10.1111/jvp.12713
Kandeel M. Pharmacokinetics and oral bioavailability of amoxicillin in chick-en infected with caecal coccidiosis. J. Vet. Pharmacol. Therap. 2015; 38: 504-507. https://doi.org/10.1111/jvp.12205
Berendsen B.J.A., Elbers I.J.W., Stolker A.A.M. Determination of the stabil-ity of antibiotics in matrix and reference solutions using a straightforward procedure applying mass spectrometric detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011; 28: 1657-1666. https://doi.org/10.1080/19440049.2011.604045
Van Holthoon F., Mulder P.P., Van Bennekom E.O., Heskamp H., Zuidema T., Van Rhijn H.J. Quantitative analysis of penicillins in porcine tissues, milk and an-imal feed using derivatisation with piperidine and stable isotope dilution liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2010; 396; 3027-3040. https://doi.org/10.1007/s00216-010-3523-0
Riediker S., Stadler R.H. Simulta-neous Determination of Five β-Lactam Antibiotics in Bovine Milk Using Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 2001; 73(7): 1614-1621. https://doi.org/10.1021/ac0011383
Freitas A., Barbosa J., Ramos F. Determination of Amoxicillin Stability in Chicken Meat by Liquid Chromatography–Tandem Mass Spectrometry. Food Anal. Methods. 2011; 5: 471-479. https://doi.org/10.1007/s12161-011-9267-4
Sun L., Jia L., Xie X., Xie K., Wang J., Liu J., Wang J. Quantitative analysis of amoxicillin, its major metabolites and ampicillin in eggs by liquid chromatography combined with electrospray ionization tan-dem mass spectrometry. Food Chem. 2016; 192; 313-318. https://doi.org/10.1016/j.foodchem.2015.07.02
Kaur M.P., Rao R., Nanda S. Amox-icillin: a broad spectrum antibiotic. Int. J. Pharm. Pharm. Sci. 2011; 3: 30-37.
Bogialli S., Capitolino V., Curini R., Di Corcia A., Nazzari M., Sergi M. Simple and Rapid Liquid Chromatog-raphy−Tandem Mass Spectrometry Con-firmatory Assay for Determining Amoxicillin and Ampicillin in Bovine Tissues and Milk. J. Agric. Food Chem. 2004; 52; 3286-3291. https://doi.org/10.1021/jf0499572
Grujic S., Vasiljevic T., Lausevic M., Ast T. Study on the formation of an amoxicillin adduct with methanol using electrospray ion trap tandem mass spectrometry. Rapid Communications in Mass Spectrometry. 2007; 22: 67-74. https://doi.org/10.1002/rcm.3333.
Bruno F., Curini R., Di Corcia A., Nazzari M., Samperi R. Method develop-ment for measuring trace levels of penicil-lins in aqueous environmental samples. Rapid Communications in Mass Spectrome-try. 2001; 15: 1391-1400. https://doi.org/10.1002/rcm.381
Abdulla A., Bahmany S.A., Wijma R., van der Nagel B.C.H., Koch B.C.P. Simultaneous determination of nine β-lactam antibiotics in human plasma by an ultrafast hydrophilic-interaction chromatography–tandem mass spectrometry. J. Chromatogr. B. 2017; 1060: 138-143. https://doi.org/10.1016/j.jchromb.2017.06.014
Reyns T., Cherlet M., De Baere S., De Backer P., Croubels S. Rapid method for the quantification of amoxicillin and its major metabolites in pig tissues by liquid chromatography-tandem mass spectrometry with emphasis on stability issues. J. Chromatogr. B. 2008; 861(1): 108-116. https://doi.org/10.1016/j.jchromb.2007.11.007
De Brito R.B., Junqueira R.G. De-termination of Beta-Lactam Residues in Milk by High Performance Liquid. Brazilian Archives of Biology and Technology. 2006; 49: 41-46. https://doi.org/10.1590/S1516-89132006000200007
De Baere S., De Backer P. Quantitative determination of amoxicillin in animal feed using liquid chromatography with tan-dem mass spectrometric detection. Anal. Chim. Acta. 2007; 586; 319-325. https://doi.org/10.1016/j.aca.2006.10.036
Verdon E., Couëdor P. Multiresidue Analytical Method for the Determination of Eight Penicillin Antibiotics in Muscle Tissue by Ion-Pair Reversed-Phase HPLC after Precolumn Derivatization. J. AOAC INTERNATIONAL. 1999; 82: 1083-1095. https://doi.org/10.1093/jaoac/82.5.1083
Krasnyj spisok (19-e izdanie, jan-var' 2022 goda). Prilozhenie k ezhegodnoj informacii o veshhestvah, chasto ispol'zuemyh pri nezakonnom izgotovlenii narkoticheskih sredstv i psihotropnyh veshhestv (Forma D). V sootvetstvii s Konvenciej Organizacii Obedinennyh Nacij o bor'be protiv nezakonnogo oborota narkoticheskih sredstv i psihotropnyh veshhestv 1988 goda. Podgotovlen Mezhdunarodnym komitetom po kontrolju nad narkotikami. Vienna International Centre P.O. Box 500 1400 Vienna, Austria.
O vnesenii izmenenij v perechen' narkoticheskih sredstv, psihotropnyh vesh-hestv i ih prekursorov, podlezhashhih kontrolju v Rossijskoj Federacii: post-anovlenie Pravitel'stva RF ot 03.06.2010 g. № 398. Sobranie zakonodatel'stva RF. 1998. No 27. St. 3198; 2010, No 17. St. 2100.
Bahmany S., Abdulla A., Ewoldt T. M.J., Oehlers P.L., de Winter B.C.M., Koch B.C.P. High-throughput analysis for the simultaneous quantification of nine beta-lactam antibiotics in human plasma by UPC2-MS/MS: Method development, vali-dation, and clinical application. J. Pharm. Biomed. Anal. 2022; 219: 1-8. https://doi.org/10.1016/j.jpba.2022.114904
EMEA. Guideline in bioanalytical method validation. European Medicines Agency. Committee for medicinal products for human use: London. 2011.