A study of arginine sorption by sulfoethylated chitosan followed by a capillary electrophoresis
Abstract
Diagnostics of various human diseases and pathologies requires developing express and sensitive methods for determining amino acids. In this regard, one of the most promising analysis methods is capillary electrophoresis. It allows both determining and separating amino acids. What is more, it does not require toxic and expensive reagents.
The work is devoted to the development of a method for the electrophoretic determination of amino acids and the study of arginine sorption with a sorbent based on N-(2-sulfoethyl)chitosan cross-linked with glutaric aldehyde with a sulfoethylation degree of 1.0 (SEC 1.0).
The method of electrophoretic separation and amino acids determination (arginine, alanine, aminobutyric acid, asparagine, aspartic acid, valine, histidine, glycine, glutamic acid, lysine, leucine, isoleucine, serine, ornithine, oxyproline, methionine, threonine, tryptophan, phenylalanine, cysteine) was developed using a Kapel-105M capillary electrophoresis system. As a result of the studies, the following conditions for the separation of amino acids were optimised: detection wavelength, temperature, time of hydrodynamic sample injection, pH and the nature of the background electrolyte, and β-cyclodextrin concentration. The developed method allows separating and determining 13 amino acids in their joint presence in the solution and determining all the studied 20 amino acids when present individually in the solution. The values of the determination and detection limits were calculated for the amino acids studied by capillary electrophoresis under optimised conditions.
The effect of the pH of the ammonium-acetate buffer solution on arginine sorption by SEC 1.0 was studied by the method of limited volume at an initial concentration of amino acid of 5∙10-5 mol/dm3 (sorbent mass: 0.05 g, solution volume: 10.0 cm3). It was found that the extraction of the amino acid by the sorbent was maximum at pH 6.0 and was 44%. The introduction of an equimolar (in relation to amino acid) amount of copper (II) ions into the studied solution did not lead to an increase in the degree of arginine extraction. The extraction of the amino acid by SEC 1.0 in its copper form increased with an increase in the pH and reached the maximum value of 85% at pH 9.0. The equilibrium of arginine sorption by a sorbent in a copper form at the given pH value was established within 2 hours of phase contact.
Downloads
References
Berezov T.T., Korovkin B.F. Biologicheskaya khimiya. M., Meditsina Publ., 2007, 704 p. (In Russ.)
Palmer R.M.J., Ferringe A.G., Moncada S. Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature. 1987; 327(6122): 524-526. https://doi.org/10.1038/327524a0
Gajda G.Z., Stasjuk N.E., Gonchar M.V. The methods of l-arginine analysis, Biotechnologia Acta. 2014; 7(1); 31-39. https://doi.org/10.15407/biotech7.01.031
Kartsova L.A. Problemy analiticheskoi khimii. Vol. 18. Kapillyarnyi elektroforez. M., Nauka Publ., 2014, 444 p. (In Russ.)
Komarova N.V., Kamentsev Ya.S. Prakticheskoe rukovodstvo po ispol'zovaniyu sistem kapillyarnogo elektroforeza «Kapel'». St.Petersburg, OOO «Veda», 2003. 202 p. (In Russ.)
Manaenkov O.V., Sidorov A.I., Sul'man E.M. Ekspress-opredelenie aminokislot metodom kapillyarnogo elektroforeza bez ikh predvaritel'noi derivatizatsii. J. of Analytical chemistry. 2003; 58(10): 1093-1096.
Mel'nikov I.O., Glubokov Yu.M., Mosina A.G., Nazimov I.V. Patent RF, no 2346931, 2009. (In Russ.)
Mosina A.G., Mel'nikov I.O., Nazimov I.V., Glubokov Yu.M. Kapillyarnyi elektroforez nemodifitsirovannykh geneticheski kodiruemykh aminokislot. J. of Analytical chemistry. 2009; 64(6): 655-659.
Chen Z. L., Warren C. R., Adams M. A. Separation of amino acids in plant tissue ex-tracts by capillary zone electrophoresis with indirect UV detection using aromatic carboxylates as background electrolytes. Chroma-tographia. 2000; 51(1): 180-187. https://doi.org/10.1007/BF02490562
Bondareva L.P., Kornienko T.S., Ovsyannikova D.V., Grigorova E.V. Sorbtsiya ionov aminokislot fosfornokislymi kationoobmennikami. Vestnik VGUIT. 2014; 4: 151-156. https://doi.org/10.20914/2310-1202-2014-4-151-156 (In Russ.)
Khokhlova O.N., Khokhlov V.Yu., Lisitsyna S.A. Sorbtsiya aromaticheskikh aminokislot na nizkoosnovnykh anionoobmennikakh v neprotonirovannoi forme. Sorbtsionnye i khromatograficheskie protsessy. 2022; 22(1): 34-40. https://doi.org/10.17308/sorpchrom.2022.22/9018 (In Russ.)
Khokhlova O.N., Troshina P.V., Bykovskaya A.I., Kashirtseva E.R., Khokhlov V.Yu. Vliyanie razlichnykh faktorov na neobmennuyu sorbtsiyu aminokislot anionoobmennikami. Sorbtsionnye i khromatograficheskie protsessy. 2021; 21(4); 486-491. https://doi.org/10.17308/sorpchrom.2021.21/3632 (In Russ.)
Vasil'eva V.I., Goleva E.A., Selemenev V.F. Osobennosti sorbtsii fenilalanina profilirovannymi ionoobmennymi membranami. J. of Physical Chemistry. 2016; 90(10): 1548-1557. https://doi.org/10.7868/S0044453716100277 (In Russ.)
Golovanova O.A., Golovchenko K.K. Adsorbtsiya aminokislot na poverkhnosti brushita i gidroksilapatita. J. of Physical Chemistry. 2019; 93(11): 1714-1723. https://doi.org/10.1134/S0044453719110116 (In Russ.)
Kotova D.L., Krysanova T.A., Vasil'eva S.Yu., Beketov B.N., Vorkushin A.I. Kinetika sorbtsii alifaticheskikh aminokislot iz vodnykh rastvorov na klinoptilolite. Sorbtsionnye i khromatograficheskie protsessy. 2015; 15(3): 373-378. https://doi.org/10.17308/sorpchrom.2015.15/284 (In Russ.)
Roik N.V., Belyakova L.A., Dzyaz'ko M.A. Sorbtsiya aromaticheskikh aminokislot na dispersnom kremnezeme, khimicheski modifitsirovannom β-tsiklodekstrinom. Chemistry, Physics and Technology of Surface. 2011; 2(3): 314-324. (In Russ.)
Bondareva L.P. Osobennosti vzai-modeistviya alifaticheskikh aminokislot s bifunktsional'nym ionoobmennikom. Vestnik VGU, ser.: Chemistry, Biology, Pharmacy. 2015; 4: 7-13. (In Russ.)
GOST R 52347-2005 Kombikorma, kombikormovoe syr'e. Opredelenie soderzhaniya lizina, metionina, treonina, tsistina i trip-tofana metodom kapillyarnogo elektroforeza. M. Standartinform. 2005, 16 p.
Lytkin A.I., Chernikov V.V., Krutova O.N., Skvortsov I.A., Korchagina A.S. Termodinamika kislotno-osnovnykh vzaimodeistvii L-arginina v vodnykh rastvorakh pri 298.15 K. J. of Physical Chemistry. 2018; 92(2): 257-260. https://doi.org/10.7868/S0044453718020164 (In Russ.)
Gapeev A.A., Bondareva L.P., Astapov A.V., Kornienko T.S. Gidratatsiya i sorbtsiya aminokislot iminofosfonovym ionoobmennikom. Physico-chemistry of Surfaces and Materials Protection. 2016; 52(4): 436-441. https://doi.org/10.7868/S0044185616040112 (In Russ.)
Irving H., Williams R.J.P. The stability of transition-metal complexes. J. Chem. Soc. 1953: 3192-3210. https://doi.org/10.1039/JR9530003192