Sorption characteristics and electrical conductivity of anion-exchange membranes in lactic acid solutions

  • Oleg A. Kozaderov Voronezh State University, Voronezh, Russia
  • Olga A. Kozaderova Voronezh State University, Voronezh, Russia, Voronezh State University of Engineering Technologies, Voronezh, Russia
  • Viktoria Yu. Chernova Voronezh State University of Engineering Technologies, Voronezh, Russia
Keywords: lactic acid, strongly basic anion-exchange membrane, sorption, non-exchange absorption, electrical conduc-tivity, degree of dispersion of the ion exchanger.

Abstract

The electromembrane synthesis of lactic acid and demineralization of its aqueous solutions are a promising option for solving applied problems of whey processing. The assessment of the sorption capacity of the main working elements of the apparatus - ion-exchange membranes is required for the effective organization of the electromembrane process. The analysis of the sorption characteristics and electrical conductivity of membranes allows to establish the mechanism of interaction of substances with ion exchangers; they are necessary for calculating the kinetic parameters of ions in ion-exchange membranes, important for modelling and interpreting ion transport in electromembrane systems. In this study, the sorption characteristics of strongly basic anion-exchange membranes with quaternary ammonium groups MA-41 (Shchekinoazot, Russia) and Ralex AM(N)-PP (Mega, Czech Republic) were investigated in individual aqueous solutions of lactic acid (0.25 and 0.35 mol/ dm3). For the MA-41 membrane, which has larger particles of ion-exchange material in its composition, in comparison with Ralex AM(N)-PP, the share of non-exchange sorption of lactic acid reached 25% of the total (exchange and non-exchange) sorption, which was 2-3 times higher than for the Ralex AM(H)-PP membrane. The studied membranes were comparable in terms of the total sorption of lactic acid, which has a value of 2.06±0.16 mmol/g. Sorption kinetic curves were plotted. It was shown that the time required to reach the maximum working capacity of the studied strongly basic membranes with quaternary ammonium groups from different manufacturers in terms of lactic acid was 34 and 22 minutes (for initial lactic acid concentrations of 0.25 and 0.35 mol/dm3 respectively). The electrical conductivity of samples of anion-exchange membranes in the studied solutions of lactic acid was measured. Diffusion coefficients for Lac--ions in ion-exchange membranes were calculated. The estimation method for the particle size of an ion exchanger in the composition of heterogeneous membrane based on the analysis of photographs of membrane samples obtained by optical microscopy has been proposed. The membrane must be treated in an indicator solution prior microscopy. This will enhance the differences in the light transmission of the ion exchanger/polyethylene and identify the ion exchanger particles against the background of an inert binder.

Downloads

Download data is not yet available.

Author Biographies

Oleg A. Kozaderov, Voronezh State University, Voronezh, Russia

DSc in Chemistry, Head of the Physical Chemistry Department, Department of Chemistry, Voronezh State University, Voronezh, Russia, e-mail: ok@chem.vsu.ru

Olga A. Kozaderova, Voronezh State University, Voronezh, Russia, Voronezh State University of Engineering Technologies, Voronezh, Russia

DSc in Chemistry, Asspciate Professor of the Physical Chemistry Department, Department of Chemistry, Voronezh State University, Professor of the Department of Inorganic Chemistry and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh, Russia, e-mail: kozaderova-olga@mail.ru

Viktoria Yu. Chernova, Voronezh State University of Engineering Technologies, Voronezh, Russia

Student of Voronezh State University of Engineering Technologies, Voronezh, Russia, e-mail: vikyart33@gmail.com

References

Malafeev K.V., Moskalyuk O.A., Yudin V.E. et al. Synthesis and properties of fibers prepared from lactic acid-glycolic acid copolymer. Polymer Science, Series A. 2017; 59 (1): 53-57. https://doi.org/10.1134/S0965545X17010096

Fomin V.A., Zavrazhnov S.A. Sostoyanie i napravleniya razvitiya rabot po polucheniyu biorazlagaemykh polimerov iz molochnoi kisloty. Plasticheskie massy. 2011; 5: 50-58. (In Russ.)

Zolotareva M.S., Volodin D.N., Bes-sonov A.S., Topalov V.K. Elektrodializ – naibolee effektivnyi protsess deminerali-zatsii molochnoi syvorotki. Molochnaya promyshlennost'. 2015; 3: 37-39. (In Russ.)

Shinkarev S.M., Aksenov A.V. Biotechnological method of obtaining lactic acid Patent RF, no. 2661792, 2018.

Khromova T.A., Rodionov D.A., Lazarev S.I., Polyansky K.K. Structural and kinetic characteristics of cheese whey. Cheesemaking and buttermaking. 2022; 1: 46-49. https://doi.org/10.31515/2073-4018-2022-1-46-48 (In Russ.)

Rodionov D.A., Lazarev S.I., Polyansky K.K., Abonosimov O.A., Polushkin D.L. Changing the structure of the whey flow in the tubular channel of the ultrafiltration element. Cheesemaking and butter-making. 2021; 1: 42-44. https://doi.org/10.31515/2073-4018-2021-42-44 (In Russ.)

Komesu A., Wolf Maciel M.R., Filho R.M. Separation and purifications technologies for lactic acid – A Brief Review. Bi-oResources. 2017; 12 (2): 4364-4383. https://doi.org/10.15376/biores.12.2.Komesu

Rostovtseva V.A., Pulyalina A. Yu., Dubovenko R.R., Saprykina N.N., Vinogradova L.V., Polotskaya G.A. Influence of ionic liquid on transport properties of hybrid membranes in the lactic acid de-hydration process. Membranes and Mem-brane Technologies. 2021; 3 (5): 274-281. https://doi.org/10.1134/S2517751621050103

Ovcharenko E.O., Vasil'eva V.I., Shaposhnik V.A., Kozaderova O.A. Sorbtsiya aminokislot kationoobmennoi membranoi. Sorptsionnye I khromatograficheskie protsessy. 2001; 1(1): 84-90. (In Russ.)

Kozaderova O.A., Shaposhnik V.A. Kinetic parameters of ion-exchange mem-brane in amino acid solutions. Russian Journal of Electrochemistry. 2004; 40 (7): 698-703. https://doi.org/10.1023/B:RUEL.0000035251.04661.f7

Kozaderova O.A., Kalinina S.A., Morgacheva E.A., Niftaliev S.I. Sorption characteristics and diffusion permeability of the MA-41 anion-exchange membrane in lactic acid solutions. Sorptsionnye I khromatograficheskie protsessy. 2021; 21 (3): 317-325. https://doi.org/10.17308/sorpchrom.2021.21/3465 (In Russ.)

Selemenev V.F., Slavinskaya G.V., Khokhlov V.Yu. Praktikum po ionnomu obmenu. Voronezh, 2004, 160 р. (In Russ.)

Vasil'ev V.P. Analiticheskaya khimiya. V 2 ch. Ch. 2. Fiziko-khimicheskie metody analiza. Moskva. Vysshaya shkola, 1989, 384 р. (In Russ.)

Shaposhnik, V.A., Vasil'eva V.I., Grigorchuk O.V. Yavleniya perenosa v ionoobmennykh membranakh. M. MPhTI, 2001. 200 р. (In Russ.)

OOO IP Shchekinoazot. http://www.azotom.ru/monopolyarnye-membrany.

AO MEGA. https://www.mega.cz/membranes/

GOST 4919.1-2016 Reaktivy i osobo chistye veshchestva. Metody prigotovleni-ya rastvorov indikatorov. M.: Standartin-form, 2018, 30 p.

Nebavskaya, K.A., Sarapulova V.V., Sabbatovskiy K.G., Sobolev V.D. [et al.]. Impact of ion exchange membrane surface charge and hydrophobicity on electrocon-vection at underlimiting and overlimiting currents. Journal of Membrane Science. 2017; 523: 36-44. https://doi.org/10.1016/j.memsci.2016.09.038

Sarapulova V.V, Nevakshenova E.E., Nebavskaya X.A. et al. Characteriza-tion of bulk and surface properties of anion-exchange membranes in initial stages of fouling by red wine. Journal of Membrane Science. 2018; 559: 170-182. https://doi.org/10.1016/j.memsci.2018.04.047

Vasil'eva V.I., Akberova E.M., Zhiltsova A.V., Chernykh E.I., Sirota E.A., Agapov B.L. Sem diagnostics of the sur-face of mk-40 and ma-40 heterogeneous ion-exchange membranes in the swollen state after thermal treatment. Journal of surface investigation: x-ray, synchrotron and neutron techniques. 2013; 7 (5): 833-840. https://doi.org/10.1134/S1027451013050194.

Akberova E.M., Yatsev A.M., Kozhukhova E.Yu., Vasil'eva V.I. Microscopic analysis of the surface of heterogeneous membranes with a different degree of ion exchanger dispersity after temperature in-fluence. Condensed matter and interphases. 2017; 19 (2). 158-165. (In Russ.)

Zabolotsky V.I., Nikonenko V.V. Ion transport in membranes. M. Nauka, 1996. 392 p. (In Russ.)

Niftaliev S.I., Kozaderova O.A., Kim K.B. Мatchina К.S Izuchenie protsessa perenosa toka v sisteme geterogennaya ionoobmennaya membrana-rastvor nitrata ammoniya. Condensed mat-ter and interphases. 2016; 18 (2). 232-240. (In Russ.)

Vasil’eva V.I., Pismenskaya N.D., Akberova E.M., Nebavskaya K.A. Effect of thermochemical treatment on the surface morphology and hydrophobicity of heterogeneous ion-exchange membranes. Russ. J. Phys. Chem. A, 2014; 88 (8): 1293-1299. https://doi.org/10.1134/S0036024414080317

Volkov A. I. Bol'shoi khimicheskii spravochnik / A. I. Volkov, I. M. Zharskii. Minsk Sovremennaya shkola, 2005. 608 р.

Damaskin, B. B. Elektrokhimiya / B. B. Damaskin, O. A. Petrii, G. A. Tsirlina. – M. Khimiya, 2001. 624 р.

Published
2023-03-12
How to Cite
Kozaderov, O. A., Kozaderova, O. A., & Chernova, V. Y. (2023). Sorption characteristics and electrical conductivity of anion-exchange membranes in lactic acid solutions. Sorbtsionnye I Khromatograficheskie Protsessy, 23(1), 18-27. https://doi.org/10.17308/sorpchrom.2023.23/10990