Study of the possibility of obtaining constant concentrations of organically soluble analytes in organic media during the operation of monolithic chromato-desorption systems in a static mode

  • Igor A. Platonov Korolev Samara National Research University, Samara, Russian Federation
  • Irina M. Mukhanov Korolev Samara National Research University, Samara, Russian Federation
  • Irina N. Kolesnichenko Korolev Samara National Research University, Samara, Russian Federation
  • Alexander S. Bryksin Korolev Samara National Research University, Samara, Russian Federation
Keywords: gas chromatography, calibration mixtures, static methods, chromato-desorption systems, polymers, organic solvents, epoxy resins.

Abstract

The development and improvement of methods and means for the preparation of standard samples of composition, substances and materials is one of the urgent tasks of modern analytical chemistry. Such samples are widely used for calibrating analytical instruments, checking the correctness of chemical analysis results, creating model environments for accelerated testing and studying the mechanism of various reactions and processes, evaluating the effectiveness of catalysts, and creating artificial gas and liquid media. Thus, the range of potential consumers of gas mixtures of known compositions is not limited to analytical chemists, but also includes a large number of specialists in various areas of science and production.

The study presents the results of an analytical solution of the problem - the development and manufacture of monolithic chromato-desorption systems (CDS), the use of which allows to obtain solutions of organic solvents with a known content of the target substance by a static method. The object of study is a polymer rod obtained as a result of polymerization of a two-component epoxy resin, in which the analyte, previously applied to a nanodispersed adsorbent, is uniformly distributed in the polymer volume. The extraction of analytes from CDS was carried out under various temperature and barometric conditions in a static extraction mode. The results of this study can be used to create solutions of organic solvents with a known content of the target substance.

Downloads

Download data is not yet available.

Author Biographies

Igor A. Platonov, Korolev Samara National Research University, Samara, Russian Federation

prof., grand  Ph.D  (technical  sciences), Head of the department of chemistry, Samara National Research University, Samara, Russian Federation, e-mail: pia@ssau.ru

Irina M. Mukhanov, Korolev Samara National Research University, Samara, Russian Federation

candidate of Chemical Sciences. Associate Professor of the hemistry Department, Samara National Research University, Samara, Russian Federation, e-mail: mim042004@mail.ru.

Irina N. Kolesnichenko, Korolev Samara National Research University, Samara, Russian Federation

candidate of Chemical Sciences. Associate Professor of the hemistry Department, Samara National Research University, Samara, Russian Federation, e-mail: irniks@mail.ru.

Alexander S. Bryksin, Korolev Samara National Research University, Samara, Russian Federation

the postgraduate student of the Department of Chemistry, Samara National Research University, Samara, Russian Federation, Е-mail: 79376442669@yandex.ru

References

GOST R ISO 6142-2008 Analiz gazov. Prigotovlenie graduirovochnyh gazovyh smesej. Gravimetricheskij metod. M, Standartinform, 2008, 35 p.

GOST R ISO 6144-2008 Analiz gazov. Prigotovlenie graduirovochnyh gazovyh smesej. Staticheskij ob'emnyj metod. M., Standartinform, 2008, 27 p.

Slominska М., Konieczka P., Namiesnik J. Standard gas mixtures – indispensable reference materials in the analysis of gaseous media, Trends Anal. Chem. 2010; 29(5): 419-429. https://doi.org/10.1016/j.trac.2010.02.003

Slominska M., Konieczka P., Namiesnik J. New developments in preparation and use of standard gas mixtures. Trends Anal. Chem. 2014; 62: 135-143. https://doi.org/10.1016/j.trac.2014.07.013

Fijalo C., Dymerski T., Gebicki J., Namiesnik J. Devices for the Production of Reference Gas Mixtures. Crit. Rev. Anal. Chem. 2016; 46(5): 361-373. https://doi.org/10.1080/10408347.2014.953672

Platonov I.A., Rodinkov O.V., Gorbacheva A.V., Moskvin L.N., Kolesnichenko I.N. Methods and devices for the preparation of standard gas mixtures. J. of analytical chemistry. 2018; 73(2): 109-127. https://doi.org/10.1134/S1061934818020090

Naganowska-Nowak A., Konieczka P., Przyjazny A., Namiesnik J. Development of techniques of generation of gaseous standard mixtures. Crit. Rev. Anal. Chem. 2005; 35(1): 31-35. https://doi.org/10.1080/10408340590947916

Gameson L., Rhoderick G.C., Guenther F.R. Preparation of accurate, low-concentration gas cylinder standards by cryogenic trapping of a permeation tube gas stream. Anal. Chem. 2012; 84: 2857-2861. https://doi.org/10.1021/ac203392w

Berezkin V.G., Platonov I.A., Lepsky M.V., Ismagilov D.R., Onuchak L.A. Use of the interfacial equilibrium in a gas-nonvolatile liquid system for the preparation of a gas flow containing trace amounts of volatile compounds. Russian journal of physical chemistry A. 2003; 77(7): 1204-1206.

Lepsky M.V., Platonov I.A., Kudryashov S.Yu., Berezkin V.G., Ismagilov D.R., Onuchak L.A. Teoreticheskoe i eksperimental'noe izuchenie povedeniya sistemy posledovatel'no soedinennykh barboterov s tsel'yu polucheniya gazovogo potoka, soderzhashchego statsionarnye kontsentratsii letuchikh veshchestv. Chemchemtech. 2004; 47(9): 138-143.

Berezkin V.G., Platonov I.A., Onuchak L.A., Lepsky M.V. Patent RF, no. 2213958, 2003.

Moskvin L.N., Rodinkov O.V., Katruzov A.N. Khromatomembrannyi metod razdeleniya veshchestv i ego analiticheskie vozmozhnosti. J. of analytical chemistry. 1996; 51(8): 835-838. (In Russ.)

Moskvin L.N., Rodinkov O.V. Surface-layer composite sorbents for the rapid preconcentration of volatile organic substances from aqueous solutions and gas atmospheres, J. Analyt. Chem. 2012; 67(10): 814-822. https://doi.org/10.1134/S1061934812100073

Moskvin L.N., Rodinkov O.V. Chromatomembrane methods: physicochemical principles, analytical and technological possibilities. Russ. Bull. Chem. Int. Ed. 2012; 4: 723-740. https://doi.org/10.1007/s11172-012-0105-7

Platonov I.A., Kolesnichenko I.N., Novikova E.A., Mukhanova I.M. Poluchenie gazovykh smesei izvestnogo sostava dinamicheskimi metodami. Sorbtsionnye i Khromatograficheskie Protsessy. 2017; 17(3): 378-387. https://doi.org/10.17308/sorpchrom.2017.17/391 (In Russ.)

Kubín M., Špaček P., Chromeček R. Gel permeation chromatography on porous poly(ethylene glycol methacrylate). Collection of Czechoslovak Chemical Communications. 1967; 32: 3881-3887. https://doi.org/10.1135/cccc19673881

Ross W.D., Jefferson R.T. In Situ–Formed Open-Pore Polyurethane as Chromatography Supports. Journal of Chromatographic Science. 1970; 8(7): 386-389. https://doi.org/10.1093/chromsci/8.7.386

Schnecko H., Bieber O. Foam filled columns in gas chromatography. Chromatographia. 1971; 4(3): 109-112. https://doi.org/10.1007/BF02311199

Ross W.D., Hileman F.D., Sievers R.E., Hess G.G. In situ preparation and evaluation of open pore polyurethane chromatographic columns. Analytical Chemistry. 1973; 45(7): 1126-113. https://doi.org/10.1021/ac60329a029

Dandeneau R.D., Zerenner E.H. An investigation of glasses for capillary chromatography. Journal of High Resolution Chromatography. 1979; 2(6): 351-356. https://doi.org/10.1002/jhrc.1240020617

Noel R., Sanderson A., Spark L. A Monolithic Ion-Exchange Material Suitable for Downstream Processing of Bioproducts. Cellulosics: Materials for Selective Separations and Other Technologies. 1993; 17-24. https://doi.org/10.1007/978-94-011-2864-3_30

Svec F. Monolithic columns: A historical overview. Electrophoresis. 2017; 38(22-23): 2810-2820. https://doi.org/10.1002/elps.201700181

Belenkii B.G. High-performance liquid chromatography of proteins on short capillary columns. Journal of High Resolution Chromatography. 1990; 13(3): 185-189. https://doi.org/10.1002/jhrc.1240130310

Belenkii B.G. High-Performance Membrane Chromatography. A Novel Method of Protein Separation. Journal of Liquid Chromatography. 1990; 13(1): 63-70. https://doi.org/10.1080/01483919008051787

Tennikova T.B. High-performance membrane chromatography of proteins, a novel method of protein separation. Journal of Chromatography A. 1991; 555(1-2): 97-107. https://doi.org/10.1016/S0021-9673(01)87170-3

Svec F., Frechet J.M.J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Analytical Chemistry. 1992; 64(7): 820-822. https://doi.org/10.1021/ac00031a022

Liang Y., Zhang L., Zhang Y. Recent advances in monolithic columns for protein and peptide separation by capillary liquid chromatography. Analytical and Bioanalytical Chemistry. 2012; 405(7); 2095-2106. https://doi.org/10.1007/s00216-012-6570-x

Eeltink S., Wouters S., Dores-Sousa J.L., Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. Journal of Chromatography A. 2016; 1498: 8-21. https://doi.org/10.1016/j.chroma.2017.01.002

Kanatieva A.Yu., Kurganov A.A., Viktorova E.N., Korolev A.A. Monolithic stationary phases in liquid and gas chromatography. Russian chemical reviews. 2008; 77(4): 373-379. https://doi.org/10.1070/RC2008v077n04ABEH003754

Zolotov Yu.A. Osnovy analiticheskoi khimii. M., Vysshaya shkola Publ. 2004, pt. 1, 361 p.

Published
2023-05-24
How to Cite
Platonov, I. A., Mukhanov, I. M., Kolesnichenko, I. N., & Bryksin, A. S. (2023). Study of the possibility of obtaining constant concentrations of organically soluble analytes in organic media during the operation of monolithic chromato-desorption systems in a static mode. Sorbtsionnye I Khromatograficheskie Protsessy, 23(2), 158-170. https://doi.org/10.17308/sorpchrom.2023.23/11140