A comparative assessment of the operation of monolithic chromatography-desorption systems in static and dynamic extraction modes
Abstract
The correctness, accuracy and precision of quantitative chromatographic analysis are determined by the quality of preparation of standard composition samples, the development and use of which allows analytical laboratories to solve a wide range of applied problems.
The article presents the results of a study of monolithic chromatography-desorption systems (MCDS), which allows creating solutions of organic substances with a normalized amount of organosoluble analytes in a dynamic way. The target component is evenly distributed throughout the volume of the composite material. The resulting experimental samples were studied in a specially designed extraction unit at temperatures of 25, 50, and 80°C and an eluent flow rate 3 cm3/min, which was n-octane. The obtained extracts were analysed using gas chromatography. A comparative assessment of the amount of desorbed organosoluble analyte by the extraction solution in static and dynamic extraction modes was carried out. It has been shown that the dynamic extraction method is characterized by the ability to create flows of organic solvents for a longer time, while reaching a working quasi-stationary mode, characterized by a deviation of the analyte concentration of no more than 10%, is achieved faster. It has been established that in order to obtain quasi-stationary concentrations in the dynamic extraction mode, it is necessary to ensure the passage of 500-600 cm3 at a flow rate of 3 cm3/min through the studied samples, weighing 1.54 g, containing organosoluble analytes. The results obtained allowed us to recommend the manufactured MCDS for creating solutions of organic solvents with a known content of the target substance.
Downloads
References
GOST R ISO 6142-2008 Analiz gazov. Prigotovlenie graduirovochnyh gazovyh smesej. Gravimetricheskij metod. M., Standartinform, 2008, 35 p.
GOST R ISO 6144-2008 Analiz gazov. Prigotovlenie graduirovochnyh gazovyh smesej. Staticheskij ob'emnyj metod. Moskva, Standartinform, 2008, 27 p.
Tjandra A.D., Pham A.-H., Chan-drawati R. Polydiacetylene-Based Sensors To Detect Volatile Organic Compounds. Chem. Mater, 2022; 34(7): 2853-2876. https://doi.org/10.1021/acs.chemmater.1c04318
Sartone L., Polvara E., Invernizzi M., Sironi S. Determination of Air Pollutants: Application of a Low-Cost Method for Preparation of VOC Mixtures at Known Concentration,/ Sustainability, 2022; 14(15): 9149. https://doi.org/10.3390/su14159149
Rodinkov O., Postnov V., Spivakov-skyi V., Znamenskaya E., Zheludovskaya A., Nesterenko P. Preconcentration of Vol-atile Organic Compounds on Carbon Mag-netic Sorbents in the Analysis of Air by Us-ing the Configuration Change of the Sorbent Bed during the Transition from Sorption to Thermodesorption GC-FID. Separations, 2023; 10(7): 416. https://doi.org/10.3390/separations10070416
Rodinkov O., Postnov V., Spivakov-skyi V., Vlasov A., Bugaichenko A., Slasti-na S., Znamenskaya E., Shilov R., Lanin S., Nesterenko P. Comparison of Adsorbents Containing Carbon Nanotubes for Express Pre-Concentration of Volatile Organic Compounds from the Air Flow. Separa-tions, 2021; 8(4): 50. https://doi.org/10.3390/separations8040050
Barratt R.S. The preparation of stand-ard gas mixtures. A review. Analyst, 1981; 106(1265): 817-849. https://doi.org/10.1039/AN9810600817
Slominska M., Konieczka P., Na-miesnik J. New developments in preparation and use of standard gas mixtures, Trends Anal. Chem., 2014; 62: 135-143. https://doi.org/10.1016/j.trac.2014.07.013
Milton M.J.T., Vargha G.M., Brown A.S. Gravimetric methods for the preparation of standard gas mixtures, Metrologia, 2011; 48(5): R1-R9. https://doi.org/10.1201/9780203755105
Nelson G. Gas Mixtures. Routledge, 2018; 1: 282. https://doi.org/10.1201/9780203755105
Fijalo C., Dymerski T., Gebicki J., Namiesnik J. Devices for the Production of Reference Gas Mixtures. Crit. Rev. Anal. Chem., 2016; 46(5): 361-373. https://doi.org/10.1080/10408347.2014.953672
Platonov I.A., Rodinkov O.V., Gor-bacheva A.V., Moskvin L.N., Kolesnichen-ko I.N. Methods and devices for the prepa-ration of standard gas mixtures. J. of ana-lytical chemistry, 2018; 73(2): 109-127. https://doi.org/10.1134/S1061934818020090
Platonov I.A., Kolesnichenko I.N., Novikova E.A., Mukhanova I.M. Polu-chenie gazovykh smesei izvestnogo sostava dinamicheskimi metodami, Sorbtsionnye i Khromatograficheskie Protsessy, 2017; 17(3): 378-387. https://doi.org/10.17308/sorpchrom.2017.17/391 (In Russ.)
Platonov I.A., Marilov S.S., Nikishin I.A., Arutjunov Ju.I., Minahmetov R.A., Efimov E.G., Bryksin A.S., Labaev M.Ju. Patent RF, no. 202679, 2021. (In Russ.)
Kiper R.A. Rastvorimost' veshhestv : Spravochnik. Pushhino, 2-e jelektronnoe izdanie, 2020, 290 p. (In Russ.)
Platonov I.A., Muhanova I.M., Kole-snichenko I.N., Bryksin A.S. Izuchenie vozmozhnosti poluchenija postojannyh koncentracij organorastvorimyh analitov v organicheskih sredah v processe jeksplu-atacii monolitnyh hromato-desorbcionnyh system, Sorbtsionnye i khromatografiches-kie protsessy, 2023; 23(2): 158-170. https://doi.org/10.17308/sorpchrom.2023.23/11140 (In Russ.)
Vitenberg A.G., Konopel'ko L.A. Gas-chromatographic headspace analysis: metrological aspects, 2011: 66(5): 438-457. https://doi.org/10.1134/S106193481103018X (In Russ.)