Reversed-phase HPLC on the “monomeric” reversed phases: factors determining the retention of sorbates

  • Viktor I. Deineka Belgorod State University, Belgorod, Russia
  • Elena Yu. Oleinits Belgorod State University, Belgorod, Russia
  • Vladimir F. Selemenev Voronezh State University, Voronezh, Russia
  • Tatyana V. Eliseeva Voronezh State University, Voronezh, Russia
Keywords: reversed-phase columns, structure of “monomeric” phases, characterization of columns, linear solvation energy relationships, hydrophobic-subtraction model

Abstract

This brief review discusses options for the characterization of “monomeric” reverse phases aimed at understanding the types of interactions that determine the retention of sorbates in liquid chromatography. Traditional point (determined at one certain composition of the mobile phase) methods for determining the retention capacity, hydrophobicity (as methylene selectivity) relevant to the assessment of dispersion interactions are considered; their advantages and disadvantages are shown and the option of using substance separation maps based on the relative retention analysis method was proposed as an alternative. Attention was drawn to the fact that in real reverse-phase sorbents the density of grafting of alkyl chains is two times less dense compared to solid n-alkanes. In this case, sorbate molecules can penetrate into the grafted phase, and such penetration depends on the shape of the molecules. Consequently, conventional “monomer” reverse phases have a specific selectivity with respect to the retention of a number of substances with a special structure. It has been shown that modern methods of analysis do not pay enough attention to the difference in the mechanisms of retention of substances: absorption or adsorption, although different parameters are important for these mechanisms. Moreover, attention to this characteristic is not paid in the two most frequently used now very interesting and informative methods - the linear solvation energy relationships (LSERs) and the hydrophobic-subtraction model. The linear solvation energy relationships method does not differentiate between sorbates retained by different mechanisms (absorption or adsorption), and the resulting noticeable differences between calculated and experimental data are not surprising. At the same time, interpretation of the analysis results using the LSERs is complicated by the uncertainty of the contribution of sorbates of partial properties in the mobile and stationary phases to the solvation energy, since only their difference is calculated. However, comparison of different columns in the same mobile phases can be quite informative. The disadvantage of the second approach is not only the requirement to use several columns, but also the requirement of significant qualitative differences between the retention of sorbates on them. In addition, the possibility of decomposing all interactions into characteristic types is questionable, since the method does not use any of the orthogonal (independent of the calculation used) properties of sorbates.

Downloads

Download data is not yet available.

Author Biographies

Viktor I. Deineka, Belgorod State University, Belgorod, Russia

Professor of the Department of General Chemistry Belgorod state national research University, Belgorod, e-mail deineka@bsu.edu.ru

Elena Yu. Oleinits, Belgorod State University, Belgorod, Russia

Assistant of the Department of General Chemistry, Belgorod State National Research University, Belgorod, Russian Federation, e-mail: oleinits_e@bsu.edu.ru

Vladimir F. Selemenev, Voronezh State University, Voronezh, Russia

DSci in chemistry, Voronezh State University, Voronezh, Russian Federation, e-mail: common@chem.vsu.ru

Tatyana V. Eliseeva, Voronezh State University, Voronezh, Russia

Head of the Department of Analytical Chemistry, Voronezh State University, Voronezh, e-mail: tatyanaeliseeva@yandex.ru

References

Himiya privityh poverhnostnyh soedinenij / Pod red. G.V. Lisichkina. M.: FIZMATLIT. 2003. 592 s. (in Russ.)

Deineka V.I., Burzhinskaya T.G., Deineka L.A. The Surface Structure of “Monomeric” and “Polymeric” Reversed Stationary Phases and Mechanisms of Carotenoid Separation. Protection of Metals and Physical Chemistry of Surfaces. 2022; 58(6): 1188-1192. https://doi.org/10.1134/S2070205122060053

Zhuravlev L.T. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir. 1987; 3: 316-318. https://doi.org/10.1021/la00075a004.

Deineka V.I., Nguyen Anh Van, Deineka L.A. Model of a Reversed Phase Grafted on Silica Gel, Russ. J. Phys. Chem. A, 2019; 93(12): 2490-2493. https://doi.org/10.1021/cr00092a005

Deineka V.I., Burzhinskaya T.G., Deineka L.A. The Surface Structure of “Monomeric” and “Polymeric” Reversed Stationary Phases and Mechanisms of Carotenoid Separation, Protection of Metals and Physical Chemistry of Surfaces, 2022; 58(6): 1188-1192. https://doi.org/10.1134/S2070205122060053

Žuvela P., Skoczylas M., Jay Liu J., Ba̧czek T. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem. Rev., 2018; 119: 3674-3729. https://doi.org/10.1021/acs.chemrev.8b00246

Rafferty J.L., Zhang L., Siepmann J.I., Schure M.R. Retention Mechanism in Reversed-Phase Liquid Chromatography: A Molecular Perspective. Anal. Chem. 2007; 79: 6551-6558. https://doi.org/10.1021/ac0705115

Horváth C., Melander W., Molnár I. Solvophobic Interactions in Liquid Chromatography with Nonpolar Stationary Phases. J. Chromatogr. A. 1976; 125: 129-156. https://doi.org/10.1016/S0021-9673(00)93816-0

Deineka V.I., Deineka L.A., Saenko I.I., Chulkov A.N. A Float Mechanism of Retention in Reversed-Phase Chromatography. Russian Journal of Physical Chemistry A. 2015; 89: 1300-1304. https://doi.org/10.1134/S0036024415070079

Deineka V.I., Burzhinskaya T.G., Deineka L.A. Separation of carotenoids during reversed-phase HPLC: retention mechanism and methylene selectivity on a monomeric stationary phase. Sorbtsionnye i khromatograficheskie protsessy. 2022; 22(4): 393-405. (In Russ.). https://doi.org/10.17308/sorpchrom.2022.22/1056

Carr P.W., Li J., Dallas A.J., Eikens D.I. et al. Revisionist Look at Solvophobic Driving Forces in Reversed-Phase Liquid Chromatography. J. Chromatogr. A, 1993; 656: 113-133. https://doi.org/10.1016/0021-9673(93)80800-N

Carlos A. Gonzalez Standard Reference Material® 870 Column Performance Test Mixture for Liquid Chromatography / National Institute of Standards & Technology Certificate of Analysis. Gaithersburg, MD 20899. 2016. https://www.hplc.eu/Downloads/NIST_SRM_870.pdf

Claessens H.A., van Straten M.A., Cramers C.A., Jezierska M. et al. Comparative study of test methods for reversed-phase columns for high-performance liquid chromatography. J. Chromatogr. A, 1998; 826: 135-156. https://doi.org/0.1016/S0021-9673(98)00749-3.

Deineka V.I., Oleinits E.Yu., Blinova I.P., Deineka L.A. Comparing Two Versions of a Separation Map in Reversed Phase Liquid Chromatography. Russian Journal of Physical Chemistry A, 2022; 96(8): 1768-1772. https://doi.org/10.1134/S0036024

Moldoveanu S.C. HPLC Analysis. Ch. 9 / In: Essentials in Modern HPLC Seperations. Serban C. Moldoveanu, Victor David. Elsevier. 2012. 550 p.

Deineka V.I. Relative retentions analysis in reversed-phase HPLC. Columns standardization. Sorbtsionnye i khromatograficheskie protsessy. 2006; 6(4): 596-01. (In Russ.)

Deineka V.I., Nguyen Anh Van, Deineka L.A. Model of a Reversed Phase Grafted on Silica Gel. Russian Journal of Physical Chemistry A. 2019; 93(12): 2490-2493. https://doi.org/10.1134/S0036024419120057

Czauderna M., Kowalczyk J. HPLC Separation of Some Unsaturated and Saturated Fatty Acids. Chem. Anal. (Warsaw)., 2002; 47: 867-882. https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPP1-0031-0019

Kurbatova S.V., Shumskaya N.Yu. Issledovanie vzaimosvyazi mezhdu strukturoj i hromatograficheskim povedeniem karbonil'nyh proizvodnyh adamantana v usloviyah obrashchenno-fazovoj VEZHKH, Vestnik SamGU. Estestvennonauchnaya seriya. 2004. Vtoroj spec. vypusk. 123-130. (In Russ.)

Stahl W., Sundquist A.R., Hanusch M., Schwarz W. et al. Separation of β-Carotene and Lycopene Geometrical Isomers in Biological Samples. Clin. Chem., 1993; 39/5: 810-814. https://doi.org/10.1093/clinchem/39.5.810

Saleh M.H., Tan B. Separation and Identification of Cis/Trans Carotenoid Isomers. J. Agric. Food Chem. 1991; 39: 1438-1443. https://doi.org/10.1021/jf00008a015.

Deineka V.I., Burzhinskaya T.G., Deineka L.A., Blinova I. P. Determination of Carotenoids of Tomato Fruits of Different Colors. J. Anal. Chem. 2021; 76(2): 196-203. https://doi.org/10.1134/S1061934820120060

Engelhardt H., Nikolov M., Arangio M., Scherer M. Studies on Shape Selectivity of RP Cl8-Columns. Chromatographia. 1998; 48(3/4): 186-189. https://link.springer.com/content/pdf/10.1007/BF02467669.pdf

Deineka V.I., Deineka L.А., Blinova I.P., Коstenko М.О., Оleinitz Е.Yu. About chromatographic behavior of flavonoids in reversed-phase HPLC. Sorbtsionnye i khromatograficheskie protsessy. 2016; 16(3): 377-383. (In Russ.)

Gritti F., Guiochon G. Effect of the endcapping of reversed-phase high-performance liquid chromatography adsorbents on the adsorption isotherm. J. Chromatogr. A. 2005; 1098: 82-94. https://doi.org/10.1016/j.chroma.2005.08.045

Wilson N.S., Gilroy J., Dolan J.W., Snyder L.R. Column selectivity in reversed-phase liquid chromatography VI. Columns with embedded or end-capping polar groups. J. Chromatogr. A. 2004; 1026: 91-100. https://doi.org/10.1016/j.chroma.2003.11.041

Vyňuchalová K., Jandera P. Selectivity Tests of Stationary Phases for Reversed-Phase HPLC. Anal. Lett. 2011; 44(9): 1640-1662. https://doi.org/10.1080/00032719.2010.520393

Deineka V.I. A New Method for Assessing the Effect of Residual Silanol Groups on Total Retention in Reversed-Phase HPLC. J. Anal. Chem. 2007; 62(7): 665-668. https://doi.org/10.1134/S106193480707009X

Kamlet M.J., Taft R.W. Linear solvation energy relationships. Local empirical rules – of fundamental laws of chemistry? A reply to the chemometricians. Acta Chem. Scand. B. 1985; 39: 611-628. https://doi.org/10.3891/acta.chem.scand.41b-0589

Sadek P.C., Carr P.W., Doherty R.M., Kamlet M.J. et al. Study of Retention Processes in Reversed-Phase High-Performance Liquid Chromatography by the Use of the Solvatochromic Comparison Method. Anal. Chem. 1985; 57: 2971-2978. https://doi.org/10.1021/ac00291a049

Tan L.C., Carr P.W., Abraham M.H. Study of retention in reversed-phase liquid chromatography using linear solvation energy relationships I. The stationary phase. J. Chromatogr. A. 1996; 752: 1-18. https://doi.org/10.1016/S0021-673(96)00459-1

Abraham M.H., McGowan J.C. The Use of Characteristic Volumes to Measure Cavity Terms in Reversed Phase Liquid Chromatography. Chromatographia. 1987; 23(4): 243-246. https://doi.org/10.1007/BF02311772

Abraham M.H., Whiting G.S., Doherty R.M., Shuely W.J. Hydrogen bonding XVI. A new solute solvation parameter, πH2, from gas chromatographic data. J. Chromatogr. 1991; 587: 213-228. https://doi.org/10.1016/0021-9673(91)85158-C

Zhai J., Cfrr P.W. Comparison of the Retention Characteristics of Aromatic and Aliphatic Reversed Phases for HPLC Using Linear Solvation Energy Relationships. Anal. Chem. 1998; 70: 3619-3628. https://doi.org/10.1021/ac980173v

Wilson N.S., Nelson M.D, Dolan J.W., Snyder L.R. et al. Column selectivity in reversed-phase liquid chromatography. I. A general quantitative relationship. J. Chromatogr. A. 2002; 961: 171-193. https://doi.org/10.1016/s0021-9673(02)00659-3

Snyder L.R., Dolan J.W., Carr P.W. The hydrophobic-subtraction model of reversed-phase column selectivity. J. Chromatogr. A. 2004; 1060: P. 77-116. https://doi.org/10.1016/j.chroma.2004.08.121

Published
2023-10-28
How to Cite
Deineka, V. I., Oleinits, E. Y., Selemenev, V. F., & Eliseeva, T. V. (2023). Reversed-phase HPLC on the “monomeric” reversed phases: factors determining the retention of sorbates. Sorbtsionnye I Khromatograficheskie Protsessy, 23(4), 514-528. https://doi.org/10.17308/sorpchrom.2023.23/11561