Sorption, diffusion characteristics and electrical conductivity of anion-exchange membranes in lactic acid and sodium chloride solu-tions

  • Olga A. Kozaderova Voronezh State University of Engineering Technologies, Voronezh State University
Keywords: lactic acid, strong basic anion exchange membrane, sorption, non-exchange absorption, diffusion permea-bility, electrical conductivity

Abstract

Membrane technologies, including processes involving ion-exchange membranes, can be used at certain stages during the production of lactic acid from whey. In this study, a comparative analysis of the sorption characteristics, diffusion permeability and electrical conductivity of strong basic anion exchange membranes with quaternary ammonium groups - MA-41 (Shchekinoazot, Russia) and Ralex AM(H)-PP (Mega, Czech Republic) in individual aqueous lactic acid and sodium chloride solutions was performed over a wide range of concentrations. For the MA-41 membrane, which has larger ion exchanger particles inside the composite, in comparison with Ralex AM(H)-PP, higher non-exchange sorption of lactic acid and higher diffusion fluxes of both lactic acid and sodium chloride were observed. This may be due to: a greater uneven distribution of a fixed charge throughout the membrane volume due to a lower degree of dispersion of the ion exchanger and, as a consequence, a smaller charged surface area of dispersed particles inside the membrane (which led to a less effective Donnan exclusion of co-ions from the membrane phase); with the growth of macropores on the surface of the sample. The electrical conductivity of samples of anion-exchange membranes in solutions of lactic acid and sodium chloride was measured. For membranes in a mineral salt solution, using a three-wire and microheterogeneous conductivity model, the contribution of conductivity channels (mixed gel-solution channel, gel phase) to the overall electrical conductivity of the system was calculated. The presence of a wider gel-solution conduction channel for Ralex AM(H)-PP in combination with comparable values of the proportion of gel and intergel phases in MA-41 and Ralex AM(H)-PP samples served as indirect confirmation of the influence of the degree of dispersion of the ion exchanger included in the composition of heterogeneous samples, on the transport characteristics of membranes.

Downloads

Download data is not yet available.

Author Biography

Olga A. Kozaderova, Voronezh State University of Engineering Technologies, Voronezh State University

DSc in Chemistry, Professor of the Department of Inorganic Chemistry and Chemical Technology, Voronezh State University of Engineering Technologies, Voronezh; Assоciate Professor of the Physical Chemistry Department, Department of Chemistry, Voronezh State University, Voronezh, Russian Federation, E-mail: kozaderova-olga@mail.ru

References

Zolotareva M.S., Volodin D.N., Bes-sonov A.S., Topalov V.K. Elektrodializ - naibolee effektivnyi protsess deminerali-zatsii molochnoi syvorotki. Molochnaya promyshlennost'. 2015; 3: 37-39. (In Russ.)

Kim Y.H., Moon S.H., Lactic acid re-covery from fermentation broth using one-stage electrodialysis. J. Chem. Technol. Biotechnol.: International Research in Process, Environmental & Clean Technol-ogy. 2001; 76: 169-178. https://doi.org/10.1002/jctb.368

Kulincov P.I., Bobrinskaya G.A., Sel-emenev V.F., Garshina T.I., Agupova M.V. Povyshenie effektivnosti elektrodializnoi demineralizatsii molochnoi syvorotki. Sorbtsionnye i Khromatograficheskie Protsessy. 2011; 11(5): 713-716. (In Russ.)

Talebi S., Garthe M., Roghmans F., Chen G., Kentish S. Lactic acid and salt separation using membrane technology. Membranes. 2021; 11(2): 107. https://doi.org/10.3390/membranes11020107

Saud A.M., Vasil'eva V.I., Goleva E.A., Akberova E.M., Kozlov A.T. Selec-tion of anion-exchange membrane for sepa-ration of phenylalanine and sodium chlo-ride by neutralization dialysis. Sorbtsionnye i Khromatograficheskie Protsessy. 2020; 20(6): 749-759. https://doi.org/10.17308/sorpchrom.2020.20/3143 (In Russ.)

Shutkina E.A., Nevakshenova E.E., Pismenskaya N.D., Mareev S.A., Nikonen-ko V.V. Diffusion permeability of the ani-on-exchange membranes in sodium dihy-drogen phosphate solution. Condensed Matter and Interphases. 2015; 17(4): 566-578. (In Russ.)

Kharina A.Yu., Charushina O.E., Eliseeva T.V. Organic fouling of anion-exchange and bipolar membranes during the separation of amino acid and sucrose by electrodialysis. Condensed Matter and In-terphases. 2023; 25(2): 268-276. https://doi.org/10.17308/kcmf.2023.25/11107

Aljundi H., Belovich J., Talu O. Ad-sorption of lactic acid from fermentation broth and aqueous solutions on Zeolite. Chemical Engineering Science. 2005; 60(18): 5004-5009. https://doi.org/10.1016/j.ces.2005.04.034

Evangelista R.L., Mangold A.J., Ni-kolov Z.L. Recovery of lactic acid by sorp-tion. Appl. Biochem. Biotechnol. 1994; 45: 131-144. https://doi.org/10.1007/BF02941793

Melnikov S.S., Kolot D.G. Electrical conductivity of ionexchange membranes in solutions containing carboxylic acids. Polythematic online scientific journal of Kuban State Agrarian University. 2016; 124: 549-562. https://doi.org/10.21515/1990-4665-124-032

Melnikov S.S. Development of a method for fixing perftorsulfopolimer mf-4sk on a heterogeneous membrane-substrate. Polythematic online scientific journal of Kuban State Agrarian Universi-ty. 2017; 125: 223-234. https://doi.org/10.21515/1990-4665-125-015

Vasil’eva V.I., Zhiltsova A.V., Akberova E.M., Fataeva A.I. Influence of sur-face inhomogeneity on current-voltage characteristics of heterogeneous ion ex-change membranes. Condensed Matter and Interphases. 2014; 16(3): 257-261. (In Russ.)

Zabolotskii V.I., Bugakov V.V., Sharafan M.V., Chermit R.Kh. Transfer of electrolyte ions and water dissociation in anion-exchange membranes under intense current conditions. Russ. J. Electrochem. 2012; 48(6): 650-659. https://doi.org/10.1134/S1023193512060158

OOO IP Shchekinoazot. Available at: http://www. azotom.ru/monopolyarnye-membrany (Accessed: 12.06.2023)

AO MEGA. Available at: https://www.mega.cz/membranes/ (Ac-cessed: 12.06.2023)

Garshina T.I., Kozaderova O.A., Shaposhnik V.A. Fiziko-khimicheskie kha-rakteristiki tonkikh ionoobmennykh mem-bran. Sorbtsionnye i khromatograficheskie protsessy. 2007: 7(1): 148-151.

Kononenko N.A., Demina O.A., Loza N.V. Membrannaya elektrokhimiya. Krasnodar. Izd-vo Kuban. gos. un-ta, 2017, 290 p. (In Russ.)

Kozaderova O.A., Kalinina S.A., Morgacheva E.A., Niftaliev S.I. Sorption characteristics and diffusion permeability of the MA-41 anion-exchange membrane in lactic acid solutions. Sorptsionnye I khromatograficheskie protsessy. 2021; 21(3): 317-325. https://doi.org/10.17308/sorpchrom.2021.21/3465 (In Russ.)

Selemenev V.F., Slavinskaya G.V., Khokhlov V.Yu. Praktikum po ionnomu obmenu. Voronezh, 2004, 160 р.

Nikonenko V.V., Vedernikova E.E., Pismenskaya N.D. Patent RF № 100275, 2010.

Shaposhnik, V.A., Vasil'eva V.I., Grigorchuk O.V. Yavleniya perenosa v ionoobmennykh membranakh. Moscow, MPhTI, 2001, 200 р. (In Russ.)

Kozaderov O.A., Kozaderova O.A., Chernova V.Yu. Sorption characteristics and electrical conductivity of anion-exchange membranes in lactic acid solu-tions. Sorptsionnye i Khromatograficheskie Protsessy. 2023; 23(1): 18-27. https://doi.org/10.17308/sorpchrom.2023.23/10990. (In Russ.)

Vasil’eva V.I., Pismenskaya N.D., Akberova E.M., Nebavskaya K.A. Effect of thermochemical treatment on the surface morphology and hydrophobicity of hetero-geneous ion-exchange membranes. Russ. J. Phys. Chem. A. 2014; 88 (8): 1293-1299. https://doi.org/10.1134/S0036024414080317

Sarapulova V., Nevakshenova E., Pismenskaya N., Dammak L., Nikonenko V. Unusual concentration dependence of ion-exchange membrane conductivity in ampholyte-containing solutions: Effect of ampholyte nature. J. Memb. Sci. 2015; 479: 28-38. https://doi.org/10.1016/j.memsci.2015.01.015

Kozaderova O.A., Shaposhnik V.A. Kinetic parameters of ion-exchange mem-brane in amino acid solutions. Russ. J. Electrochem. 2004; 40(7): 698-703. https://doi.org/10.1023/B:RUEL.0000035251.04661.f7

Zabolotsky V.I., Nikonenko V.V. Ion transport in membranes. M., Nauka, 1996, 392 p.

Published
2023-10-28
How to Cite
Kozaderova, O. A. (2023). Sorption, diffusion characteristics and electrical conductivity of anion-exchange membranes in lactic acid and sodium chloride solu-tions. Sorbtsionnye I Khromatograficheskie Protsessy, 23(4), 539-546. https://doi.org/10.17308/sorpchrom.2023.23/11563