Application of zeolites in high-performance liquid chromatography
Abstract
Inorganic zeolites or microporous crystalline aluminosilicates have high porosity, developed specific surface area, uniform pore size and ion exchange properties, which determines their molecular sieve and adsorption properties. The use of zeolites as catalysts, dryers of solvents and gases, and selective sorbents for the separation of low molecular weight compounds is widely known. Zeolites are widely used as fillers for chromatographic columns in gas adsorption chromatography.
Little is known about the use of zeolites in high-performance liquid chromatography (HPLC) and the mechanism of sorbate retention on these sorbents. Depending on the properties of sorbates, retention is determined by a combination of ion exchange, adsorption, molecular sieve effect, as well as kinetic selectivity. Due to solvation of the sorbent surface in HPLC, the thermodynamic parameters of the interaction of sorbates with zeolite change, the effective pore size decreases, and the diffusion of separated compounds into the pores of the sorbent becomes more difficult.
Nevertheless, zeolites are promising adsorbents, since specific size (dpore) and the pore geometry of zeolites, as well as the possibility of selecting zeolites with a certain polarity, determines the high selectivity of the separation of low molecular weight compounds. Wide-pore zeolites with dpore (0.6-0.8 nm) with 8, 10, 12, and 14-membered ring channels are of greatest interest for HPLC.
This review provides brief information about the classification, composition, structure of zeolites and their effect on their adsorption properties, as well as systematizes data on the use of zeolites in HPLC.
Downloads
References
Zeolites and Metal-Organic Frameworks. University Press, Amsterdam, 2018, 342 p.
Jiang N., Shang R., Heijman S.G.J., Rietveld L.C. Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep. Purif. Technol. 2020; 235: 116152-116195.
Jiang N., Shang R., Heijman S.G.J., Rietveld L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 2018; 144: 145-161.
Velarde L., Nabavi M. S., Escalera E., Antti M.-L., Akhtar F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere. 2023; 328: 138508-123523.
Shaikhutdinov I.K., Ryazanova T.K., Limareva L.V., Sokolov A.V. Application of Metal-Organic Frameworks to High-Performance Liquid Chromatography. J. Anal. Chem. 2023; 78: 1-17.
Wang Z., Zhang S., Chen Y., Zhang Z., Ma S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020; 49: 708-735.
Pérez-Botella E., Valencia S., Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022; 122: 17647-17695.
Loewenstein W., Lowenstein M., Sāo P. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 1954; 39: 92-96.
Weitkamp J. Zeolites and catalysis. Solid State Ion. 2000; 131: 175-188.
Baerlocher C., McCusker L. Database of Zeolite Structures. Available at: http://www.iza-Structure.org/databases/ (accessed 09 May 2023).
Moshoeshoe M., Nadiye-Tabbiruka M.S., Obuseng V. A Review of the Chemistry, Structure, Properties and Applications of Zeolites. Am. J. Sci. 2017; 7: 196-221.
Grün M., Kurganov A.A., Schacht S., Schüth F., Unger K.K. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J. Chromatogr. A. 1996; 740: 1-9.
Karpov S.I., Roessner F., Selemenev V.F., Gul'bin S.S., Belanova N.A., Borodina E.V., Korabel'nikova E.O., Krizhanovskaya O.O., Nedosekina I.V. Perspektivy sinteza i ispol'zovaniya uporyadochennyh mezoporistyh materialov pri sorbcionno-hromatograficheskom analize, razdelenii i koncentrirovanii fiziologicheski aktivnyh veshchestv (obzor). Sorbtsionnye i khromatograficheskie protsessy. 2013; 13(2): 125-140. (In Russ.)
Flanigen E.M., Broach R.W., Wilson S.T., Kulprathipanja S. Zeolites in Industrial Separation and Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010: 1-26.
Traa Y., Sealy S., Weitkamp J. Characterization of the pore size of molecular sieves using molecular probes, Characterization II. Molecular Sieves. Springer Berlin, Heidelberg, 2006; 5: 103-154.
Townsend R.P., Coker E.N. Chapter 11 Ion exchange in zeolites. Stud. Surf. Sci. Catal. Elsevier, 2001; 137: 467-524.
Dyer A. Chapter 16 Ion-exchange properties of zeolites and related materials. Stud. Surf. Sci. Catal. Elsevier, 2007; 168: 525-553.
McNair H.M., Chandler C.D. Molecular Sieves as Pellicular Films for Liquid Chromatography. Anal. Chem. 1973; 45: 1117-1120.
Glòd B. K., Perez G., Tomlinson A.A.G. Use of mordenite columns in ion-exclusion chromatography. J. Chromatogr. A. 1997; 760: 292-294.
Peristyy A., Nesterenko P.N., Das A., D'Alessandro D.M., Hilder E.F., Arrua R.D. Flow-dependent separation selectivity for organic molecules on metal-organic frameworks containing adsorbents. ChemComm. 2016; 52: 5301-5304.
Arrua R. D., Peristyy A., Nesterenko P.N., Das A., D'Alessandro D.M., Hilder E.F. UiO-66@ SiO2 core-shell microparticles as stationary phases for the separation of small organic molecules. Analyst. 2017; 142: 517-524.
Lanin S. N., Ledenkova M.Y., Nikitin Yu.S. Influence of the concentration of adsorb-ate and modifier in the mobile phase on reten-tion in high-performance liquid chromatography. J. Chromatogr. A. 1998; 797: 3-9.
Roque-Malherbe R.M.A. Adsorption and Diffusion in Nanoporous Materials. 2nd edition. CRC Press, Boca Raton, 2018, 318 p.
Kurganov A., Marme St., Unger K. Ef-fect of size of solvent molecule on the adsorp-tion of p- and o-xylene on ZSM-5 type zeolites and mechanism of adsorption. Stud. Surf. Sci. Catal. 1994; 84; 1299-1306.
Luzanova V. D., Rozhmanova N.B., Volgin Y.V., Nesterenko P.N. The use of zeo-lite 13X as a stationary phase for direct deter-mination of water in organic solvents by high-performance liquid chromatography. Anal. Chim. Acta. 2023; 1239: 340697-340705.
Luzanova V.D., Rozhmanova N.B., Nesterenko P.N. Primenenie ul'tramikropo-ristyh sorbentov v vysokoeffektivnoj zhidkost-noj hromatografii. «Sovremen-nye aspekty himii», Sbornik materialov IX molodezhnoj konferencii, 2-4 iyunya, 2022 g., Perm', 67-71. (In Russ.)
Denayer J. F.M., van der Beken S., De Meyer K.M.A., Martens J.A, Baron G.V. Chromatographic liquid phase separation of n-alkane mixtures using zeolites. Stud. Surf. Sci. Catal. Elsevier, 2004; 154: 1944-1949.
Denayer J.F., Ocakoglu A.R., Huy-brechts W., Martens J.A., Thybaut J.W., Marin G.B., Baron G.V. Pore mouth versus intracrys-talline adsorption of isoalkanes on ZSM-22 and ZSM-23 zeolites under vapour and liquid phase conditions. ChemComm. 2003; 3: 1880-1881.
Dumont P.J., Fritz J.S. Silicalite as a Sta-tionary Phase for HPLC. J. High Resol. Chro-matogr. 1996; 19: 691-695.
Ambrose D. L., Fritz J.S. High-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve. J. Chromatogr. B, Biomed. Appl. 1998; 709: 89-96.
Dyer A., Emms T.I. Liquid phase separa-tions of organic isomers on high silica zeolites. Microporous Mesoporous Mater. 2007; 104: 137-144.
Wach W., Fornefett I., Buttersack C., Buchholz K. Adsorption and HPLC of carbo-hydrates and related hydroxy compounds on zeolites. Anal. Methods. 2018; 10: 1817-1832.
Wach W., Buttersack C., Buchholz K. Chromatography of mono- and disaccharides on granulated pellets of hydrophobic zeolites. J. Chro-matogr. A. 2018; 1576: 101-112.
Wach W., Fornefett I., Buttersack C., Buchholz K. Chromatographic separation of saccharide mixtures on zeolites. Food Bioprod. Process. 2019; 114: 286-297.
Macko T., Pasch H., Denayer J.F. Ad-sorption of polyethylene standards from decalin on liquid chromatography column packings. J. Chromatogr. A. 2003; 1002: 55-62.
Macko T., Denayer J.F., Pasch H., Bar-on G.V. Adsorption of polyethylene from thermodynamically good solvents on a zeolite stationary phase. J. Sep. Sci. 2003; 26: 1569-1574.
Macko T., Denayer J.F., Pasch H., Pan L., Li J., Raphael A. Adsorption of Polypro-pylene and Polyethylene on Liquid Chromato-graphic Column Packings. Chromatographia. 2004; 59: 461-467.
Macko T., Pasch H., Denayer J.F. Ad-sorption of polypropylene from dilute solutions on a zeolite column packing. J. Sep. Sci. 2005; 28: 59-64.
Geodakyan K.T., Kiselev A.V., Lygin V.I. Infrakrasnye spektry metanola i acetona, adsorbirovannyh na kationirovannyh i dekationirovannyh ceolitah. ZHurn. fiz. himii. 1967; 41(2): 457-464. (In Russ.)
Snyder L.R, Kirkland J.J. Introduction to Modern Liquid Chromatography. 2-d edition. John Wiler & Sons Inc., New York, 1979, 863 p.
Nestepenko P.N. Kineticheski selektivnaya hromatografiya. Laboratoriya i proizvodstvo. 2022; 1-2: 92-100.