Preparation of individual derivatives in 1,3-oxazino[5,4,3-ij]quinolines and 1,4-oxazino[2,3,4-ij]quinolines series by column chromatography and their mass spectrometric study

  • Svetlana M. Medvedeva Voronezh State University, Voronezh, Russia
  • Alexey V. Movchan Voronezh State University, Voronezh, Russia
  • Ksenia A. Bondarenko Voronezh State University, Voronezh, Russia
  • Ksenia Dz. Shikhalieva Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
  • Khidmet S. Shikhaliev Voronezh State University, Voronezh, Russia
Keywords: column chromatography, tricyclic hydroquinoline, 1,3-oxazino[5,4,3-ij]quinoline-1,3-dione, 1,4-oxazino[2,3,4-ij]quinoline-2,3-dione, mass spectrometry, electron impact, defragmentation.

Abstract

Hundreds of highly effective compounds that have a complex of practically useful properties are known among tricyclic hydroquinolines. Therefore, the production of new compounds of high purity in this series and identification of the features of their behaviour under the influence of electron impact for the determination of their structures is important.

Previously, we synthesized 1,3-oxazino[5,4,3-ij]quinoline-1,3-diones and 1,4-oxazino[2,3,4-ij]quinoline-2,3-diones, but the nature of the mass spectral decay for the determination of their structures was not discussed. In this study, using thin-layer chromatography, it was shown that during the synthesis of these compounds by-products can be formed, for which conditions for purification using column chromatography were selected.

Fundamental differences were discovered in the stability of the studied isomeric compounds under the influence of electron impact and in the nature of fragmentation of their molecular ions. 1,4-oxazino[2,3,4-ij]quinolines were more resistant to electronic impact, the peak intensities of their molecular radical ions ([M]+•) were much higher than those of 1,3-oxazino[5,4,3-ij]quinolines, while the hydroquinoline fragment was much more stable than both the 1,3-oxazine and 1,4-oxazine rings. The presence of a multiple bond in the hydropyridine ring of the compounds reduced the intensity of the [M]+• peak. For compounds containing heme-dimethyl groups at the α-carbon (relative to the nitrogen atom) atom, the intensity of the [M]+• peak was minimal due to the ease of elimination of the methyl radical from it, especially if this led to aromatization of the quinoline fragment. Defragmentation of the oxazine cycle of 1,3-oxazino[5,4,3-ij]quinolines starts with the elimination of a carbon dioxide molecule, and defragmentation of1,4-oxazino[2,3,4-ij]quinolines starts from elimination carbon monoxide molecules.

The discovered patterns of decomposition (EI) can be used to identify similar derivatives of condensed 1,3- and 1,4-oxazines and tricyclic hydroquinolines annealed at the i and j bonds.

Downloads

Download data is not yet available.

Author Biographies

Svetlana M. Medvedeva, Voronezh State University, Voronezh, Russia

Ph.D (chemistry), associate prof. of the department of Organic Chemistry, Voronezh State University; Voronezh, Russia, e-mail: smmedvedeva@rambler.ru

Alexey V. Movchan, Voronezh State University, Voronezh, Russia

Postgraduate Student, Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University; Voronezh., Russia, e-mai: ximik_130995@mail.ru

Ksenia A. Bondarenko, Voronezh State University, Voronezh, Russia

a student of the specialty of the Department Chemistry, Voronezh State University; Voronezh, Russia, e-mai: kseeniabondarenko@mail.ru

Ksenia Dz. Shikhalieva, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia

PhD, Associate Professor, Department of Microbiology, Voronezh State Medical University named after N.N. Burdenko; Voronezh, Russia, e-mai: k.shihalieva@vsmaburdenko.ru

Khidmet S. Shikhaliev, Voronezh State University, Voronezh, Russia

prof., grand PhD (chemistry), head of Department of Organic Chemistry, Voronezh State University, Voronezh, Russia, e-mai: shikh1961@yandex.ru

References

Karcev V.G. Hinoliny: himiya i biolog-icheskaya aktivnost'. M., ICSPF Press, 2007; 6: 744 p. (In Russ.)

Sridharan V., Padmakar A., Suryavanshi P.A., Menendez J.C. Advances in the Chemis-try of Tetrahydroquinolines. Chem. Rev. 2011; 111(9): 7157-7259.

Kym, P.R., Kort, M.E., Coghlan, M.J., Moore, J.L., Tang, R., Ratajczyk, J.D., Larson, D.P., Elmore, S.W., Pratt, J.K., Stashko, M.A., Falls H.D., Lin, C.W., Nakane, M., Miller L., Tyree, C.M., Miner J.N., Jacobson P.B., Wil-cox D.M., Nguyen P., Lane B.C. Nonsteroidal Selective Glucocorticoid Modulators: The Ef-fect of C-10 Substitution on Receptor Selectivi-ty and Functional Potency of 5-Allyl-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolines. J. Med. Chem. 2003; 46(6): 1016-1030.

Coghlan M.J., Kym P.R., Elmore S.W., Wang A.X., Luly J.R., Wilcox D., Stashko M., Lin Chun-Wei, Miner J., Tyree C., Nakane M., Jacobson P., Lane B.C. Synthesis and Charac-terization of Non-Steroidal Ligands for the Glucocorticoid Receptor: Selective Quinoline Derivatives with Prednisolone-Equivalent Functional Activity. J. Med. Chem. 2001; 44: 2879-2885.

Edwards J.P., Zhi L., Pooley C.L.F., Tegley C.M., West S.J., Wang Ming-Wei, Gottardis M.M., Pathirana C., Schrader W.T., Jones T.K. Preparation, Resolution, and Bio-logical Evaluation of 5-Aryl-1,2-dihydro-5H-chromeno[3,4-f]quinolines: Potent, Orally Ac-tive, Nonsteroidal Progesterone Receptor Ago-nists. J. Med. Chem. 1998; 41(15): 2779-2785.

Elmore S.W., Coghlan M.J., Anderson D.D., Pratt J.K., Green B.E., Wang A.X., Stashko M.A., Lin C.W., Tyree C.M., Miner J.N., Jacobson P.B., Wilcox D.M., Lane B.C. Nonsteroidal Selective Glucocorticoid Modula-tors: the Effect of C-5 Alkyl Substitution on the Transcriptional Activation/Repression Profile of 2,5-Dihydro-10-methoxy-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolines. J. Med. Chem. 2001; 44(25): 4481-4491.

Medvedeva S.M., Shikhaliev K.S. Syn-thesis of 4,5-Dihydro-1H-[1,2]dithiolo[3,4-c]quinoline-1-thione Derivatives and Their Ap-plication as Protein Kinase Inhibitors. Mole-cules. 2022; 27: 4033-4051.

Kartsev V., Shikhaliev K.S., Geronikaki A., Medvedeva S.M., Ledenyova I.V., Krysin M.Y., Petrou A., Ciric A., Glamoclija J., Sokovic M. Appendix A. dithioloquinolinethi-ones as new potential multitargeted antibacteri-al and antifungal agents: Synthesis, biological evaluation and molecular docking studies. Eur. J. Med. Chem. 2019; 175: 201-214.

Medvedeva S.M., Shikhaliev K.S., Geronikaki A.A., Savosina P.I., Druzhilovskiy D.S., Poroikov V. V. Computer-aided discov-ery of pleiotropic effects: Anti-inflammatory action of dithioloquinolinethiones as a case study. SAR QSAR Environ Res. 2022; 33(4): 273-287.

Tashchilova A., Podoplelova N., Sulim-ov A., Kutov D., Ilin I., Panteleev M., Shikha-liev K., Medvedeva S., Novichikhina N., Pota-pov A., Sulimov V. New Blood Coagulation Factor XIIa Inhibitors: Molecular Modeling, Synthesis, and Experimental Confirmation. Molecules. 2022; 27(4): 1234-1252.

Sulimov A., Ilin I., Kutov D., Shikha-liev K., Shcherbakov D., Pyankov O., Stolpovskaya N., Medvedeva S., Sulimov V. New Chemicals Suppressing SARS-CoV-2 Replication in Cell Culture. Molecules. 2022; 27(17): 5732-5754.

Heier R.F., Dolak L.A., Duncan J.N., Hyslop D.K., Lipton M.F., Martin I.J.; Mauragis M.A., Piercey M.F., Nichols N.F., Schreur P.J.K.D., Smith M.W., Moon M.W. Synthesis and Biological Activities of (R)-5,6-Dihydro-N,N-dimethyl4H-imidazo[4,5,1-ij]quinolin-5-amine and Its Metabolites. J. Med. Chem. 1997; 40(5): 639-646.

Tsotinis A., Panoussopoulou M., Eleu-theriades A., Davidson K., Sugden D. Design, synthesis and melatoninergic activity of new unsubstituted and β, β′-difunctionalised 2,3-dihydro-1H-pyrrolo [3, 2, 1-ij]quinolin-6-alkanamides. Eur. J. Med. Chem. 2007; 42(7): 1004-1013.

Appelbaum P.C., Hunter P.A. The fluo-roquinolone antibacterials: past, present and future perspectives. International Journal of Antimicrobial Agents. 2000; 16(1): 5-15.

Guruswamy B., Arul R., Chaitanya M.V.S.R.K., Praveen Kumar Darsi S.S. De-sign, Synthesis and Antimicrobial Evaluation of Novel Tricyclic Benzoxazine Fluoroquin-olones under Conventional and Microwave Methods. J. Heterocyclic Chem. 2014; 53(2): 532-538.

Jeyanthi M., Venkatraman B. R. A mi-crowave assisted synthesis of few 7-mercaptobenzimidazolyl fluoroquinolones. Der Pharma Chemica. 2014; 6(1): 440-442.

Baraldi P.G., Saponaro G., Moorman A.R., Romagnoli R., Preti D., Baraldi S., Rug-giero E., Varani K., Targa M., Vincenzi F., Borea P.A., Tabrizi M.A. 7-Oxo-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxamides as Selective CB2 Cannabinoid Receptor Lig-ands: Structural Investigations around a Novel Class of Full Agonists. J. Med. Chem. 201; 55(14): 6608-6623.

Bremm K.D., Endermann R., Hallen-bach W., Himmler T., Jaetsch T., Mielke B., Pirro F., Stegemann M., Wetzstein H.G. PCT Int. Anm. WO 96/01829, 1996.

Amano H., Wakunaga S., Inoue S., Yakazaki A., Eur. Pat. Appl. EP0373531, 1990.

Zhou J. Li, G., Hong Y., Wang C., He W., Wang S., Chen Y., Wen Z., Wang Q. Copolymer of pyrrole and 1, 4-butanediol diglycidyl as an efficient additive leveler for through-hole copper electroplating. ACS Omega. 2020; 5(10): 4868-4874. https://doi.org/10.1021/acsomega.9b03691

Yang S., Thacker Z., Allison E., Ben-nett M., Cole N., Pinhero P. Electrodeposition of copper for three-dimensional metamaterial fabrication. ACS Applied Materials Interfaces. 2017; 9(46): 40921-40929. https://doi.org/10.1021/acsami.7b04721

Bogdanov A.V., Sadykov T.I., Musin L.I., Hamatgalimov A.R., Krivolapov D.B., Dobry-nin A.B., Mironov V.F. Hemoselektivnost' okisleniya 1-alkenilizatinov m-hlorperbenzojnoj kislotoj. Sintez novyh pro-izvodnyh izatovogo angidrida. ZHurnal ob-shchej himii. 2015; 85(9): 2030-2036. (In Russ.)

Kurkin A.V., Bernovskaya A.A., Yurovskaya M.A. Synthesis of N-alkylanthranilamides with a chiral substituent at the nitrogen atom. Tetrahedron: Asymmetry. 2010; 21: 2100-2107.

Dierynck I., Goeman J.L., Van Acker K.L.A., Van Der Eycken J.T.A., PCT Int. Appl. WO2004/58787, 2004.

Coppola G.M., Schuster H.F. The Chemistry of 2H-3,1-Benzoxazine-2,4(1H)-dione (Isatoic Anhydride). A Midl Process For The Preparation of 10-Alkyl-9-acridanones And It’s Application To The Syntesis of Acridone Alkaloids. J. Heterocycl. Chem. 1989; 26(4): 957-964.

Sahu A., Chatterjee A. New Synthesis of Blepharin, the Naturally Occurring -D-Glucoside of 2-Hydroxy-(2H,4H)-1,4-benzoxazin-3-one. Indian J. Chem., Sect. B: Org. Chem. 1990; 29(42): 603-605.

Medvedeva S.M., SHihaliev H.S. Effek-tivnye puti sinteza pirrolo[3,2,1-ij]hinolin-1,2-diona i produktov ego okislitel'nyh transfor-macij. Butlerovskie soobshcheniya. 2015; 42(4): 86-90. (In Russ.)

Medvedeva S.M., Movchan A.V., Si-dorenko O.E., Shestakov A.S., Ledenyova I.V., Zavarzin I.V., Shikhaliev Kh.S. Synthesis of substituted 1,3-oxazino[5,4,3-ij]quinolin-1,3-diones by the oxidation of various pyr-rolo[3,2,1-ij]quinoline-1,2-diones with m-chloroperbenzoic acid. Arkivoc. 2022; Pt. II: 215-226.

Medvedeva S.M., Kurbatov R.M., SHihaliev H.S. Sintez novyh potencial'no fizi-ologi-cheski aktivnyh zameshchennyh 1,4-oksazino[2,3,4-IJ]hinolin-2,3-dionov. «Puti i formy sovershenstvovaniya farmacevtich-eskogo obrazovaniya. Sozdanie novyh fiziolog-icheski ak-tivnyh veshchestv», materialy 6 Mezhdunarodnoj nauchno-metodicheskoj kon-ferencii «Farmobrazovanie-2016», 21-23 aprelya 2016 g., Voronezh, 2016: 398-401.

Medvedeva S.M., SHihaliev H.S., Kryl'skij D.V., Sinyaeva L.A. Poluchenie i mass-spektrometricheskij analiz 5,6-digidro-4H-pirrolo[3,2,1-ij]hinolin-1,2-diona i 1,1'-(1,2-dioksoetan-1,2-diil)bis-1,2,3,4-tetragidrohinolina. Sorbtsionnye i khromato-graficheskie protsessy. 2014; 14(6): 970-976.

SHihaliev H.S., Selemenev V.F., Medvedeva S.M., Ponomareva L.F., Kopteva N.I. Mass-spektrometricheskij analiz 1-acil-2,2,5-trimetil-4,4-dihlorciklopropan[s]hinolinov. Sorbtsionnye i khromatograficheskie protsessy. 2014; 14(2): 332-337.

Published
2023-10-29
How to Cite
Medvedeva, S. M., Movchan, A. V., Bondarenko, K. A., Shikhalieva, K. D., & Shikhaliev, K. S. (2023). Preparation of individual derivatives in 1,3-oxazino[5,4,3-ij]quinolines and 1,4-oxazino[2,3,4-ij]quinolines series by column chromatography and their mass spectrometric study. Sorbtsionnye I Khromatograficheskie Protsessy, 23(4), 705-715. https://doi.org/10.17308/sorpchrom.2023.23/11577