Three-parameter model of intermolecular interactions as a basis for classification and selection of gas-chromatographic stationary phases

  • Elena A. Zaitceva Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences (GEOKHI RAS), Moscow
  • Anatoly M. Dolgonosov Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences (GEOKHI RAS), Moscow
Keywords: intermolecular interaction energy; hydrogen bond; gas chromatography; methods for characterizing the selectivity of stationary phases; polarity; hydrophilicity.

Abstract

The present article proposes a mathematical model based on the representation of the intermolecular
interaction energy as the sum of three terms: non-polar, polar and hydrogen bond energies, which depend on
the parameters of each of the interacting objects - the generalized charge, dipole moment and the probability
of hydrogen bond formation. The work is a continuation of the method developed by the authors for describing
gas-chromatography stationary phases. The proposed method of stationary phases classification (Three-
Parameter Characterization method) differs from existing, mainly theoretical justification, the lack of adjustable
parameters and good predictive power; this method does not require special experiments or complex
computer calculations, it is very economical to use experimental data.
Selectivity of stationary phase is described by two relative characteristics - polarity and hydrophilic;
polarity is the ratio of the square of the dipole moment of the stationary phase to its generalized charge and
hydrophilicity, in turn, the probability of formation of a hydrogen bond. Quantitative concepts of polarity and hydrophilicity are introduced, they can be found from experimental data on chromatographic retention indices.
Also, these characteristics for objects of intermolecular interaction can be calculated a priori from the
molecular structure. The characteristics found are to be plotted on so-called selectivity map with coordinates
of polarity and hydrophilicity. Developed method agrees well with the corresponding characteristics of the
Rorschneider – McReynolds method. The selectivity map allows choosing the most suitable stationary phase
for separation of the target analytes according to the principle “similia similibus solvuntur". This method has
a good predictive ability and can be used to predict the behavior of analytes in gas chromatography.

Downloads

Download data is not yet available.

Author Biographies

Elena A. Zaitceva, Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences (GEOKHI RAS), Moscow

PhD student, Lab of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry Russian
Academy of Sciences (GEOKHI RAS), Moscow, lil-dante@mail.ru

Anatoly M. Dolgonosov, Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences (GEOKHI RAS), Moscow

Dr.Sci.(Chem.), Leading scientific researcher, Lab of Sorption Methods, Vernadsky Institute of Geochemistry
and Analytical Chemistry Russian Academy of Sciences (GEOKHI RAS), Moscow, amdolgo@mail.ru

References

1. Rohrschneider L., J.Chomatogr. A, 1965, Vol. 17, pp. 1-12.
2. McReynolds W.O., J.Chromatogr. A, 1970, Vol. 8, pp. 337-345.
3. Skhunmakers P., Optimizaciya selektivnosti v khromatografii, Per. s angl. Pod red. V.A. Davankova. M., Mir. 1989, 399 p.
4. Vitha M., Carr P.W., J.Chromatogr. A, 2006, Vol. 1126, pp. 143-194.
5. Abraham M.H., Ibrahim A., Zissimos A.M., J.Chromatogr. A, 2004, Vol. 1037, pp. 29-47.
6. Pierotti R.A., Chem. Rev., 1976, Vol. 76, pp. 717-726.
7. Platts J.A., Abraham M.H., Butina D., Hersey A., Journal of Chemical Information and Computer Sciences, 2000, Vol. 40, pp. 71-80.
8. Shevchik J., Lowventup M.S.H., J.Chromatogr. A, 1981, Vol. 217, pp. 139-150.
9. Dolgonosov A.M., Rudakov O.B., Prudkovskij A.G.,Kolonochnaya analiticheskaya khromatografiya: praktika, teoriya, modelirovanie,
SPb, Lan', 2015, 468 p. ISBN: 978-5-8114-1870-1.
10. Schatz V.D., Sahartova O.V., Vysokoeffektivnaya zhidkostnaya khromatografiya, Riga, Zinatne, 1988, 390 p.
11. Program for the calculation ClogP download here. Available at: http://www.biobyte.com/index.html accessed 2 October 2019.
12. Platts J.A., Abraham M.H., Butina D., Hersey A., Journal of Chemical Information and Computer Sciences, 2000, Vol. 40, pp. 71-80.
13. Abraham M.H., Chadha H.S., Leo A.J., J.Chromatogr. A, 1994, Vol. 685, pp. 203-211.
14. Abraham M.H., Chadha H.S., Whiting G.S., Mitchell R.C., J. Pharm. Sci.,1994, Vol.83, pp. 1085-1100.
15. Lombardo, Shalaeva M.Y., Tupper K.A., Gao F., Abraham M.H., J. Med. Chem., 2000, Vol. 43, pp. 2922-2928.
16. Dias N.C., Poole C.F., J. Planar. Chromatogr., 2000, Vol. 13, pp. 337-347.
17. Dolgonosov A.M., Zaitceva E.A., Sorbtsionnye i khromatograficheskie protsessy, 2014, Vol. 14, No 4, pp. 578-590.
18. Dolgonosov A.M., Zaitceva E.A., Sorbtsionnye i khromatograficheskie protsessy, 2015, Vol. 15, No 3, pp. 321-332.
19. Dolgonosov A.M., Zaitceva E.A., Vestnik Universiteta Dubna, 2015, No 1, pp. 36-41.
20. Dolgonosov A.M., Sorbtsionnye i khromatograficheskie protsessy, 2015, Vol. 15, No 3, pp. 312-320.21. Kaplan I.G. Mezhmolekulyarnye vzaimodejstviya. Fizicheskaya interpretaciya, komp'yuternye raschety i model'nye potencialy / I.G. Kaplan ; per. S angl., M., BINOM, Laboratoriya znanij, 2012, 394 p.
22. Reinganum M., Ann.d.Physik, 1912, Vol. 38, p. 649.
23. Keesom W.H., Phys.Z., 1921, Vol. 22, p. 129.
24. Debye P., Phys.Z, 1920, Vol.21, p. 178.
25. Falkenhagen M., Phys.Z, 1922. Vol.23. p.87.
26. Zaitceva E.A., Dolgonosov A.M., Sorbtsionnye i khromatograficheskie protsessy, 2018, Vol. 18, No 5, pp. 676-689.
27. Dolgonosov A.M., Model' elektronnogo gaza i teoriya obobshchennyh zaryadov dlya opisaniya mezhatomnyh vzaimodejstvij i adsorbcii,
M., LIBROKOM, 2009, pp. 167.
28. Dolgonosov A.M., Nespecificheskaya selektivnost' v probleme modelirovaniya vysokoeffektivnoj khromatografii. M., KRASAND,
2012. 256 p.
29. Dolgonosov A.M., Protect. Metals & Phys. Chem. Surfaces, 2015, Vol. 51, pp. 951-956. DOI: 10.1134/S2070205115060052.
30. Dolgonosov A.M., Prudkvskij A.G., Rossijskij zhurnal fizicheskoj khimii, 2006, Vol. 80, No 6, pp. 964-968. ISSN 0036-0244. DOI:
10.1134/S0036024406060227.
31. Cambridge soft – chemical drawing, Chemical databases, Enterprises solutions, Desktop software, Consulting services. Available
at: http://www.cambridgesoft.com accessed 2 October 2019.
32. Dolgonosov A.M.,Rus. Chem. Bul., 2016, Vol. 65, pp. 952-963.
33. McReynolds W.O. "Gas Chromatographic Retention Data", Preston. Technical Abstracts Co., Niles, Ill (1966), 335.
34. Dean J. A. LANGE'S HANDBOOK OF CHEMISTRY, Fifteenth Edition (1992), McGRAW-HILL, INC. ISBN 0-07-016384-7.
35. Official website Shinwa Chemical Industries Ltd., RMR constants for SP. Available at: http://www.shinwacpc.
co.jp/en/products/gc/packed/stationary/ accessed 2 October 2019.
Published
2019-10-30
How to Cite
Zaitceva, E. A., & Dolgonosov, A. M. (2019). Three-parameter model of intermolecular interactions as a basis for classification and selection of gas-chromatographic stationary phases. Sorbtsionnye I Khromatograficheskie Protsessy, 19(5), 525-541. https://doi.org/10.17308/sorpchrom.2019.19/1167