Planar microfluid concentrators based on silagerm 8040 for sampling and sample preparation for the analy-sis of gas media

  • Asthik E. Margaryan Самарский национальный исследовательский университет им. академика С.П. Королева, Самара
  • Igor A. Platonov Samara National Research University, Samara
  • Irina N. Kolesnichenko Samara National Research University Samara National Research University, Samara
  • Ekaterina A. Novikova Samara National Research University Samara National Research University, Samara
  • Alesya S. Karsunkina Korolev Samara National Research University (Samara University), Samara
Keywords: analysis of exhaled air, diabetes mellitus, biomarker, acetone, sampling, sample preparation, sorption, de-sorption.

Abstract

Exhaled air is a matrix with a complex molecular composition, including more than 3,500 components of various origins, the content of which can indicate the normal or pathological state of human health.

One of the selective markers of diabetes formed in exhaled air is acetone. Its increased content (more than
2.54 mg/m3) in exhaled air indicates excessive levels of glucose in the blood. To carry out a diagnostically reliable quantitative analysis of acetone in exhaled air, it is necessary to minimize random errors at all stages of sampling, concentration and calibration. The proposed MFC allow to carry out sample preparation and calibration under identical conditions, while combining the stages of sampling and concentration.

The sample was concentrated using microfluidic systems based on Silagerm 8040 filled with a sorbent. Porapak-Q was chosen as the sorbent, which was pre-treated with ethyl alcohol vapour before filling into the channels.

Sorption concentration in dynamic mode using an MFC was carried out by passing the resulting model gas mixture “acetone in air” with a concentration of 2.54 mg/m3 at t = 0oC until breakthrough appears.

Desorption using the MFC based on Porapak-Q was carried out at temperatures of 50°C, 60°C, 70°C in dynamic mode by passing purified air at a rate of 0.5 ml/sec (desorption time is one second). The effluent was analysed by gas chromatography. The main advantage of this system is the ability to include it in a gas microchromatograph. The resulting analytical complex is mobile, which allows the usage for non-invasive diagnostics in non-laboratory conditions. Optimal concentration conditions using the MFC filled with Porapak-Q sorbent at which the maximum concentration coefficient of 43 was achieved have been established (tsorb=0oC; tdes=70oC, Vsorb=45 ml, tdes=1 sec).

In a comparative analysis of the standard sampling method (using a Tedlar bag) and the method proposed using the MFC, it was found that the use of Tedlar bags for sampling exhaled air resulted in significant decrease in the accuracy characteristics (more than 30-65%) within 12 h, which is not applicable for diagnostic purposes. This fact was due to the sorption of the analyte on the walls of the bag and to eliminate undesirable effects it is necessary to use an additional step of sample drying. When the MFC was used for sampling, such a tendency was not observed, the accuracy characteristic did not decrease by more than 6-10% within 8 hours and no additional stages of drying the sample of exhaled air were required.

Downloads

Download data is not yet available.

Author Biographies

Asthik E. Margaryan, Самарский национальный исследовательский университет им. академика С.П. Королева, Самара

the postgraduate student of the Department of Chemistry, Samara National Research University, e-mail: asyaigithanyan@mail.ru

Igor A. Platonov, Samara National Research University, Samara

 Head of the Department of Chemistry, Professor, Doctor of Technical Sciences, Department of Chemistry, Samara National Research University, Samara, Russia, e-mail: pia@ssau.ru

Irina N. Kolesnichenko, Samara National Research University Samara National Research University, Samara

candidate of chemical sciences, associate professor, Department of Chemistry, Samara National Research University Samara National Research University, Samara, Russia, e-mail: irniks@mail.ru

Ekaterina A. Novikova, Samara National Research University Samara National Research University, Samara

candidate of chemical sciences, associate professor, Department of Chemistry, Samara National Research University Samara National Research University, Samara, Russia, e-mail: novikova.ea@ssau.ru

Alesya S. Karsunkina, Korolev Samara National Research University (Samara University), Samara

he postgraduate student of the Department of Chemistry, Samara National Research University, Samara, Russia, e-mail: karsunkina.alesya@mail.ru

References

Копылов Ф.Ю., Сыркин А.Л., Чо-хамидзе П.Ш. Перспективы диагностики различных заболеваний по составу вы-дыхаемого воздуха // Клиническая меди-цина. 2013. № 10. С. 16-21.

Глобальный доклад по диабету // www.whogis.com: Всемирная организа-ция здравоохранения. – 2016. – URL: http://www.whogis.com/diabetes/global-report/ru/ (дата обраще-ния 10.01.2023).

Платонов И.А., Платонов Вл.И., Платонов Вал.И., Рощупкина И.Ю. Пилларные МЭМС колонки для газовой хроматографии // Сорбционные и хроматографические процессы. 2018. Т. 18, № 2. С. 243-247.

Платонов Вал.И. Микрофлюидные колонки для газовой хроматографии : дис….канд. хим. Наук. Воронеж, 2020. 102 с.

Li S. A fast-response microfluidic gas concentrating device for environmental sensing // Sensors and Actuators A. 2007. Vol. 136. P. 69-79.

Горюнов М.Г. Определение летучих соединений в газовых средах с исполь-зованием газохроматографических мик-рофлюидных систем: диссертация на соискание ученой степени канд. хим. наук. Воронеж, 2019. 107 с.

Ghosh A. Microchip gas chromatog-raphy columns, interfacing and perfor-mance // Talanta. 2018. Vol. 188. P. 463-492.

Gupta V., Talebi M., Deverell J. , Sandron S., Nesterenko P.N. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liq-uid chromatography // Analytica Chimica Acta. 2016. Vol. 910. P. 84-94.

ГОСТ 6144 – 2008. Анализ газов. Приготовление градуировочных газовых смесей. Статический объёмный метод. М.: Стандартинформ, 2009. 23 с.

Малышева А.О., Балдин М.Н., Грузнов В.М., Блинова Л.В. Внелабора-торный экспрессный газохроматографи-ческий способ анализа выдыхаемого че-ловеком воздуха с автоматизированной градуировкой // Аналитика и контроль. 2018. Т. 22, № 2. С. 177-185.

Sagnik Das, Mrinal Pal. Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehen-sive Review, Journal of The Electrochemi-cal Society, 2020. Vol. 167. 037562. https://doi.org/10.11491945-7111/ab67a6

ГОСТ Р 8.736-2011 Государствен-ная система обеспечения единства из-мерений (ГСИ). Измерения прямые мно-гократные. Методы обработки результа-тов измерений. Основные положения (с Поправкой). М.: Стандартинформ. 2019.

Published
2023-12-27
How to Cite
Margaryan, A. E., Platonov, I. A., Kolesnichenko, I. N., Novikova, E. A., & Karsunkina, A. S. (2023). Planar microfluid concentrators based on silagerm 8040 for sampling and sample preparation for the analy-sis of gas media. Sorbtsionnye I Khromatograficheskie Protsessy, 23(5), 732-740. https://doi.org/10.17308/sorpchrom.2023.23/11691