SEM-analysis of surface properties of experimental sulfocation-exchange membranes Ralex
Abstract
A comparative analysis of the effect of the manufacturing technology of heterogeneous sulfocationexchange
membranes Ralex CM Pes produced by MEGA a.s. (Czech Republic) on the structural properties
of their surface by SEM was carried out. The CM Pes membrane is a composite of a sulfocation-exchanger
with polyethylene and reinforcing polyester fiber. In the manufacture of experimental membranes, the particle
sizes of the ion-exchanger differed at a constant volume ratio of cation-exchange resin and polyethylene.
The resin particle sizes were varied by using different milling time. The study of the surface of swollen
membrane samples was performed by scanning electron microscopy in the low-vacuum mode. Quantitative
assessment of the fraction of ion-exchange material and porosity on the membrane surface was carried out
using the authors’ software package.
With an increase in the milling time of the ion-exchanger from 5 to 80 min, the structure of the
membrane surface becomes more homogeneous due to a decrease in the resin particle sizes and the distance
between them, as well as a decrease in the fraction and size of structure defects. A more than 1.5-fold decrease
in the size of ion-exchanger particles and in the distance between them was revealed. The fraction of
the ion-exchanger with a radius of less than 1 μm increases significantly. At the same time, there is a 1.5-fold
decrease in the fraction, as well as in the size of pores and structure defects. The ratio of the fractions of the
conducting and nonconducting phases on the membrane surface remains almost constant (15-17%).
Downloads
References
2. De Valenca J.C., Wagterveld R.M., Lammertink R.G.H., Tsai P.A., Phys. Rev. E, 2015, Vol. 92, Art. no 031003. DOI:
10.1103/PhysRevE.92.031003
3. Wessling M., Morcillo L.G., Abdu S., Sci. Reports, 2014, Vol. 4, p. 4294. DOI:10.1038/srep04294
4. Tadimeti J. G. D., Kurian V., Chandra A., Chattopadhyay S., J. Membr. Sci., 2016, Vol. 499, pp. 418–428. DOI: 10.1016/j.memsci.2015.11.001
5. Zabolotsky V.I., Novak L., Kovalenko A.V., Nikonenko V.V. et al., Petroleum Chem., 2017, Vol. 57, pp. 779-789. DOI:
10.1134/S0965544117090109
6. Nikonenko V.V., Mareev S.A., Pis’menskaya N.D., Uzdenova A.M. et al., Russ. J. Electrochem., 2017, Vol. 53, pp. 1122-1144. DOI: 10.1134/S1023193517090099
7. Vasil’eva V.I., Akberova E.M., Zabolotskii V.I., Russ. J. Electrochem., 2017, Vol. 53, pp. 398-410. DOI: 10.1134/S1023193517040127
8. Akberova E.M., Vasil’eva V.I., Zabolotsky V.I., Novak L., J. Membr. Sci., 2018, Vol. 566, pp. 317-328. DOI:10.1016/j.memsci.2018.08.042
9. Kamusewitz, H., Schossig-Tiedemann M., Keller M., Paul D., Surf. Sci., 1997, Vol. 377-379, pp. 1076-1081. DOI: 10.1016/S0039-6028(96)01549-X
10.Ghalloussi R., Garcia-Vasquez W., Chaabane L., Dammak L. et al., J. Membr. Sci., 2013, Vol. 436, pp. 68-78. DOI:
10.1016/j.memsci.2013.02.011
11.Vasil’eva V.I., Kranina N.A., Malykhin M.D., Akberova E.M. et al., J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, 2013, Vol. 7, pp. 144-153. DOI: 10.1134/S1027451013010321
12.Vasil’eva V.I., Akberova E.M., Zhiltsova A.V., Chernykh E.I. et al., J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, 2013, Vol. 7, pp. 833-840. DOI:10.1134/S1027451013050194
13.Martí-Calatayud M.C., Buzzi D.C., García-Gabaldón M., Bernardes A.M. et al., J. Membr. Sci., 2014, Vol. 466, pp. 45-57. DOI:10.1016/j.memsci.2014.04.033
14. Asraf-Snir M., Gilron J., Oren Y., J. Membr. Sci., 2016, Vol. 520, pp. 176–186. DOI:10.1016/j.memsci.2016.07.013
15.Lehmani A., Durand–Vidal S., Turq P., J. Appl. Polym. Sci., 1998, Vol. 68, pp. 503-508. DOI: 10.1002/(SICI)1097-
4628(19980418)68:3<503::AIDAPP16>3.0.CO;2-V
16.Araya-Farias M., Bazinet L., J. Colloid Interface Sci., 2006, Vol. 296, pp. 242-247. DOI: 10.1016/j.jcis.2005.08.040
17.Pismenskaya N.D., Pokhidnia E.V., Pourcelly G. & Nikonenko, V.V., J. Memb. Sci., 2018, Vol. 566, pp. 54-68. DOI:
10.1016/j.memsci.2018.08.055
18.Vasil’eva V.I., Akberova E.M., Goleva E.A., Yatsev A.M. et al., J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, 2017, Vol. 11, No 2, pp. 49-56. DOI:10.1134/S1027451017020367
19.Zhao Zh., Shia Sh., Cao H., Shan B. et. al., Desalination, 2018, Vol. 428, pp. 199-206. DOI: 10.1016/j.desal.2017.11.021
20.Belashova E., Mikhaylin S., Pismenskaya N., Nikonenko V. et. al., Sep. Purif. Techn., 2017, Vol. 189, pp. 441-448. DOI: 10.1016/j.seppur.2017.08.045
21.Butylskii, D.Y., Mareev, S.A., Nikonenko, V.V., Pismenskaya, N.D. et. al., Petroleum Chem., Vol. 56, pp. 1006-1013. DOI: 10.1134/S0965544116110037
22.Volodina E., Pismenskaya N., Nikonenko V., Larchet C. et. al., J. Colloid Interface Sci., 2005, Vol. 285, pp. 247–258. DOI: 10.1016/j.jcis.2004.11.017
23.Vasil’eva V. I., Pismenskaya N. D., Akberova E. M., Nebavskaya K. A., Russ. J. Phys. Chem. A, 2014, Vol. 88, No. 8, pp. 1293–1299. DOI:10.1134/S0036024414080317
24.Vasil'eva V.I., Akberova E.M., Shaposhnik V.A., Malykhin M.D., Russ. J. Electrochem, 2014, Vol. 50, pp. 789-797. DOI: 10.1134/S102319351408014X
25.Website of MEGA a.s. Available at: https://www.mega.cz/membranes/ (accessed 20.09.2019)
26.Berezina N.P., Kononenko N.A., Dvorkina G.A, Shel'deshov N.V. Fiziko-khimicheskiye svoystva ionoobmennykh materialov. Krasnodar, Izd-vo Kuban. gos. un-ta, 1999, 82 p.27.Reed S. J. B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge, UK: Cambridge University Press. 2005. 212 p.
28.Uglov V. V., Koval’ N. N., Kuleshov A. K., Ivanov Yu. F. et. al., J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, 2011, No 5, pp. 350-357. DOI: 10.1134/S1027451011040173
29.Sirota E.A., Kranina N.A., Vasil'eva V.I., Malykhin M.D. et al., Vestn. Voronezh. gos. unta. Ser. Khimiya. Biologiya. Farmatsiya, 2011, № 2, pp. 53–59.
30.Otsenka poverkhnostnoy i obyemnoy neodnorodnosti geterogennykh ionoobmennykh membran po elektronno-mikroskopicheskim snimkam: certificate of state registration of a computer program / E.A. Sirota, V.I. Vasil’eva, E.M. Akberova; FSBEE HPE VSU. No 2012617310 29.08.2012; registered 26.10.2012. 2 p.
31.Taylor J. An introduction to error analysis. California, USA: University Science Books, 1982. 327 p.
32.Vasil’eva V. I., Zhil’tsova A. V., Akberova E. M., Fataeva A. I. Condensed Matter and Interphases, 2014, Vol. 16, No. 3, pp. 257–261.
33.Melnikov S., Loza S., Sharafan M., Zabolotskiy V., Separ. Purif. Technol., 2015, Vol. 157, pp. 179-191. DOI:10.1016/j.seppur.2015.11.025
34.Svoboda M., Slouka Z., Schrott W., Šnita D., Microelectronic Engineering, 2009, Vol. 86, pp. 1371-1374. DOI:10.1016/j.mee.2009.01.019