Adsorption properties of the surface of Silochrome S-80 modified with aluminium alizarinate
Abstract
Silica-based materials are widely used in the processes of concentration and separation of various organic substances. Successful use of SiO2 is due to its chemical resistance, thermal stability, the nature and distribution of functional groups on the surface, as well as the possibility of creating materials based on it with certain textural characteristics, which are regulated by synthesis conditions and surface modification. For the solution of specific problems of chromatography, it is necessary to obtain new adsorbents with fixed functional groups, layers or elements, by varying which the number and types of adsorption centres of the original surface change. Chelate complexes of transition metals, including those deposited in the form of adsorption layers, are used as promising modifying additives of particular interest. In this work, SiO2 based on Silochrome S-80, modified with aluminium alizarinate was studied by physicochemical method. Using thermogravimetry it was established that aluminium alizarinate is stable up to 270 °C. Using adsorption porosimetry, it was shown that modification of silica leads to a decrease in the average diameters and total volumes of pores, and specific surface areas from 84 to 79 m²/g. Using IR and Raman spectroscopy, the fixation of chelates on the surface of Silochrome was proven.
The gas chromatographic method was used to study the adsorption processes of organic compounds (n-alkanes, nitromethane, heptene-1, aromatic hydrocarbons, ketones and alcohols) capable of various types of intermolecular interactions. The modification of silica with an alizarin-containing complex contributes to a change in the Henry adsorption constants and the contributions of specific interactions to the heat of adsorption. In this case, the highest values of ∆ q̅dif,1(special) are characteristic of organic compounds prone to donor-acceptor and π-complex formation.
According to the analysis of compensation thermodynamic dependencies q̅dif,1 - ∆S̅S1,c it was shown that entropy is the determining thermodynamic parameter during the adsorption of test compounds on the surface of the studied chromatographic materials.
Downloads
References
Lisichkin G.V. Himija Privitykh Poverhnostnykh Soedinenij. M., Fizmatlit, 2003: 592 p. (In Russ.)
Gavrilenko M.A., Slizhov Yu.G., Faustova Zh.V., Kasymova T.A., Sol-Gel Synthesis of Chelate Containing Materials for Gas Chromatography. Advanced Materials Research, 2014; 1040: 448-452.
Rodinkov O.V., Karpov D.S., Postnov V.N., Moskvin L.N., Kompozicionnye gidrofobnye sorbenty dlya koncentrirovaniya letuchih organicheskih veshchestv iz vodnyh rastvorov. Vestnik SPb un-ta, 2007; 4(4): 77-83.
Zolotov Yu.A. Razdelenie i koncentrirovanie v himicheskom analize. Russian Chemical journal, 2005; 49 (2): 6-10. (In Russ.)
Patrushev Yu.V., Sidelnikov V.N. The properties of capillary columns with silica organic-inorganic MCM41 type po-rous layer stationary phase. J. Chromatog. A, 2014; 1351: 103-109. https://doi.org/10.1016/j.chroma.2014.05.042
Gavrilenko M A. Diss. cand. chem. nauk. Tomsk, 2016, 302 р. (In Russ.)
Onuchak L.A., Burmatnova T.S., Stepanova R.F., Kuraeva YU.G., Tyurina E.S. Sorbcionnye i selektivnye svojstva kompozicionnogo sorbenta na osnove ev-tekticheskoj smesi nematicheskih zhidkih kristallov i metilirovannogo β-ciklodekstrina. Zhidkie kristally i ikh prakticheskoe ispol'zovanie. 2011; 1 (35): 85-90.
Gus'kov V.Yu. Diss. cand. chem. nauk. Ufa, 2012, 140 p.
Karcova L.A., Bessonova E.A., Kolobova E.A. Ionnye zhidkosti – modifikatory hromatograficheskih i elektroforeticheskih system. J. of Analytical Chemistry, 2016; 71 (2): 147-158.
Pahnutova E.A., Slizhov YU.G. Issledovanie adsorbcionnyh svojstv pover-hnosti Silohroma S-80, modificirovannogo alizarinatami metallov. Sorbtsionnye i khromatograficheskie protsessy. 2022; 22(3): 299-309. https://doi.org/10.17308/sorpchrom.2022.22/9336
Soubayrol P., Dana G. Aluminium-27 solid-state NMR study of aluminium coordination complexes of alizarin. Magnetic resonance in chemistry, 1996; 34: 638-645. https://doi.org/10.1002/(SICI)1097-458X
(199608)34:8<638::AID-OMR926>3.0.CO;2-5
Zhu L., Bai Y.-L., Zhao Y., Xing F., Li M.-X., Zhu S. Bis(2-pyridylmethyl)amine-functionalized aliza-rin: an efficient and simple colorimetric sensor for fluoride and a fluorescence turn-on sensor for Al3+ in an organic solution. J. Dalton Transaction. 2019; 48 (15): 5045-5047. https://doi.org/10.1039/c9dt00859d
Zhuang G., Pedetti S., Bourlier Y., Jonnard C., Méthivier P. Walter А., Pradier C.-M., Jaber M. New Insights into the Structure and Degradation of Alizarin Lake Pigments: Input of the Surface Study Approach. J. Phys. Chem., 2020; 124 (23): 12370-12380. https://doi.org/10.1021/acs.jpcc.0c00746
Marzec A., Szadkowski B., Rogowski J., Maniukiewicz W., Szynkowska М., Zaborski M. Characteristics of Hybrid Pigments Made from Alizarin Dye on a Mixed Oxide Host. Materials, 2019, 360 (12): 1-14. https://doi.org/10.3390/ma12030360
Fain, V.Y., Zaitsev B.E., Rabov M.A. Metal complexes with 1,5- and 1,8-dihydroxy-9,10-anthraquinones: Electronic absorption spectra and structure of lig-ands. Russ. J. Coord. Chem., 2004; 30: 360-364. https://doi.org/10.1134/S1070328406080136
Marzec A., Szadkowski B., Rogowski J., Maniukiewicz W., Mozynski D., Zaborski M. Characterization and prop-erties of new color-tunable hybrid pigments based on layered double hydroxides (LDH) and 1,2-dihydroxyanthraquinone dye // Journal of Industrial and Engineering Chemistry, 2019; 70: 427-438. https://doi.org/10.1016/j.jiec.2018.11.005
Supina VA. Nasadochnye kolonki v gazovoj hromatografii. M. Mir. 1977. 257 p.
Makarycheva A.I. Diss. kand.him.nauk. Tomsk, 2018, 185 p. (In Russ.)
Parkaeva S.A., Belyakova L.D., Revina A.A, Larionov O.G. Adsorbcionnye svojstva kremnezema, modificirovannogo stabil'nymi nanochasticami palladiya, po dannym gazovoj 180 hromatografii. Sorbtsionnye i khromatograficheskie protsessy, 2010; 10 (5): 713-722. https://journals.vsu.ru/sorpchrom/article/view/2100
Ershov A.V., Mashin A.I., Karabanova I.A. Izuchenie kolebatel'nyh svojstv amorfnogo kremniya metodom IK-spektroskopii. N. Novgorod: NNGU. 2007, 24 p. (In Russ.)
Kolesov B.A. Prikladnaya KR-spektroskopiya. Novosibirsk, Izd-vo SORAN, 2018, 389 p.
Minakova T.S. Adsorbcionnye pro-cessy na poverhnosti tverdyh tel. Uchebnoe posobie. Tomsk: Izd-vo Tom. un-ta, 2007, 284 p.
Suhareva D.A., Gus'kov V.YU., Karpov S.I., Kudasheva F.H., Roessner F., Borodina E.V. Polyarnost' poverhnosti modificirovannogo metil'nymi i fenil'nymi gruppami adsorbenta MSM-41 po dannym gazovoj hromatografii. Russ. Journal of phys. chem., 2016; 90 (2): 285-289. https://doi.org/10.7868/S0044453716020291 (In Russ.)
Faustova ZH.V., Pahnutova E.A., Matveeva T.N, Slizhov YU.G., Ad-sorbcionnye svojstva poverhnostnyh sloev silikagelya, modificirovannyh acetilacetonatami perekhodnyh metallov. Vestn. MGTU im. N.E. Baumana. Ser. Estestvennye nauki, 2018; 77 (2): 114125. https://doi.org/10.18698/1812-3368-2018-2-114-125 (In Russ.)