Synthesis of zeolite materials based on dispersed microspheres from fly ash from coal combustion and their sorption properties in relation to Pb(II) and Cd(II)
Abstract
The influence of the composition of two narrow fractions of dispersed microspheres from fly ash from coal combustion and synthesis conditions on the production of microspherical monozeolite materials of a certain structural type was studied. The possibility of using synthesis products as Pb2+ and Cd2+ sorbents was assessed. It has been established that zeolitization products based on microspheres with a high content of glass phase (more than 90 wt. %) are monolithic solid materials of the geopolymer type, consisting of agglomerated microsphere residues and zeolite phases and, depending on the synthesis temperature, contain mainly one zeolite phase – NaX (FAU), NaP1 (GIS) or analcime (ANA). A simultaneous increase in the alkali concentration and the temperature of hydrothermal treatment led to a deeper transformation of glass microspheres and partial agglomeration of product particles with the formation of granules up to 100 microns in size. The product of alkaline activation of microspheres with a lower glass phase content (~65 wt. %) is a dispersed material based on unreacted microspheres, zeolite phases, mullite and quartz. Most zeolite products in the low Pb2+ and Cd2+ concentration range (not higher than 20 mg/l) were characterized by high solution purification parameters – KD up to 105 ml/g, the degree of extraction was up to 99%, while the most effective were sorbents based on zeolite phases NaP1 and analcime. Sorption isotherms of Pb2+ and Cd2 were approximated using the Langmuir, Freundlich, and Dubinin-Radushkevich models. It has been established that the sorption of heavy metals from dilute solutions is best described by the Freundlich and Dubinin-Radushkevich models. It has been shown that Pb2+/Cd2+ exchange forms of zeolite materials as a result of thermal exposure at 1000 оC undergo a phase transformation with the formation of mineral-like feldspar phases including lead (PbAl2Si2O8) or cadmium (CdAl2Si2O8).
Downloads
References
Wang S., Peng Y., Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J., 2010; 156(1): 11-24. https://doi.org/10.1016/j.cej.2009.10.029
Cappelletti P., Rapisardo G., Gennaro B., Colella A., Langellac A., Graziano F.S., Bish D.L., Gennaro M., Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites, J. Nucl. Mater, 2011; 414(3): 451-457. https://doi.org/10.1016/j.jnucmat.2011.05.032
D'jachkova T.Ju., Klimov E.S., Davydova O.A., Buzaeva M.V., Makarova I.A., Krivosheeva Ja.Je., Sud'in Ju.I., Podol'skaja Z.V., Modificirovanie prirodnogo ceolita uglerodnymi nanotrubkami dlja uluchshenija sorbcionnyh svojstv, Vestnik JuUrGU. Serija «Himija», 2018; 10 (3): 5-15. https://doi.org/10.14529/chem180301
Navrotskaya A.G., Aleksandrova D.D., Krivoshapkina E.F., Sillanpää M., Krivoshapkin P.V., Hybrid Materials Based on Carbon Nanotubes and Nanofibers for Environmental Applications, Frontiers in Chemistry, 2020; 8: 546. https://doi.org/10.3389/fchem.2020.00546
Ergozhin E.E., Nikitina A.I., Kabulova G.K., Bektenov N.A., Sul'fokationity na osnove rastitel'nogo syr'ja i glicidilmetakrilata, Himija rastitel'nogo syr'ja, 2013; 1: 67-72.
Petuhova Ju.N., Il'ina S.I., Fursenko A.V., Nosyrev M.A. Ochistka stochnyh vod ot ionov tjazhelyh metallov s pomoshh'ju sorbentov, Evrazijskij Sojuz Uchenyh, 2019; 64(7): 51-54. https://doi.org/10.31618/ESU.2413-9335.2019.6.64.254
Lee M.-G., Yi G., Ahn B.-J., Roddick F., Conversion of Coal Fly Ash into Zeolite and Heavy Metal Removal Characteristics of the Products, Korean J. Chem. Eng., 2000; 17(3): 325-331. https://doi.org/10.1007/BF02699048
Fomenko E.V., Anshits N.N., Solovyov L.A., Mikhaylova O.A., Anshits A.G. Composition and Morphology of Fly Ash Cenospheres Produced from the Combustion of Kuznetsk Coal, Energy Fuels, 2013; 27(9): 5440-5448. https://doi.org/10.1021/ef400754c
Jones M.R., McCarthy A., Booth A.P.P.G., Characteristics of the ultrafine component of fly ash, Fuel, 2006; 85 (16): 2250-2259. https://doi.org/10.1016/j.fuel.2006.01.028
Akimochkina G.V., Rogovenko E.S., Gareeva A.S., Fomenko E.V., Ajerodinamicheskoe vydelenie dispersnyh mikrosfer PM2.5, PM10 iz zol-unosa ot szhiganija buryh uglej s cel'ju poluchenija novyh materialov, Zhurnal Sibirskogo federal'nogo universiteta. Himija, 2022; 15 (3): 387-397. https://doi.org/10.17516/1998-2836-0302
Fomenko E.V., Akimochkina G.V., Kushnerova O.A., Rogovenko E.S., Zhizhaev A.M., Anshic A.G., Issledovanie sostava individual'nyh mikrosfer tonkodispersnoj frakcii iz zoly-unosa ot pylevidnogo szhiganija Jekibastuzskogo uglja, Himija tverdogo topliva, 2020; (2): 32-42. https://doi.org/10.31857/S0023117720020036
GOST 11022-95 (ISO 1171-97). Toplivo tverdoe mineral'noe. Metody opredelenija zol'nosti. M.: Standartinform, 1997. 13 p. (In Russ.)
GOST 5382-2019. Cementy i materialy cementnogo proizvodstva. Metody himicheskogo analiza. M: Standartinform, 2019. 70 p. (In Russ.)
Rietveld H.M., A Profile Refinement Method for Nuclear and Magnetic Structures, Journal of Applied Crystallography, 1969; 2(2): 65-71. https://doi.org/10.1107/S0021889869006558
Solovyov L.A., Full-profile refinement by derivative difference minimization, Journal of Applied Crystallography, 2004; 37: 743-749. https://doi.org/10.1107/S0021889804015638
Greg S.J., Singh K.S.W. Adsorption, surface area, porosity. London, Academic Press, 1982, 304 p.
Milovanov L.V. Ochistka i ispol'zovanie stochnyh vod predprijatij cvetnoj metallurgii. M., Izd-vo «Metallurgija», 1971, 384 p. (In Russ.)
Liua Y., Yana C., Zhangc Z., Gonga Y., Wanga H., Qiu X., A facile method for preparation of floatable and permeable fly ash-based geopolymer block, Mater. Lett., 2016; 185: 370-373. https://doi.org/10.1016/j.matlet.2016.09.044
Langmuir I., The Constitution and Fundamental Properties of Solids and Liquids, J. Am. Chem. Soc., 1916; 38(11): 2221-2295. https://doi.org/10.1021/ja02268a002
Freundlich H.M.F., Over the Adsorption in Solution, J. Phys. Chem., 1906; 57: 385-471.
Dubinin M.M., Radushkevich L.V., Equation of the Characteristic Curve of Activated Charcoal, Proceedings of the USSR Academy of Sciences, Physical Chemistry Section, 1947; 55: 331-333.