Potentiometric multisensory system based on perfluorinated membranes and dopants with proton-acceptor properties for procaine and lidocaine determination in combined pharmaceutical
Abstract
Procaine and lidocaine are widely used in the medical practice both individually and as a part of
mixtures for combined local anesthesia. The high performance liquid chromatography and gas chromatography
with various detection types are used for the simultaneous determination of local anesthetics in
blood plasma, serum, urine, as well as for research of their pharmacokinetics. The chromatographic methods,
spectrophotometry, colorimetry, capillary electrophoresis and electrochemical sensors are used for
determination of local anesthetics with other active substances or in the presence of their degradation products
in pharmaceutical preparations.
The interest in using of hybrid materials in electrochemical sensors for the determination of organic
analytes significantly increased in recent years. It was shown previously, that the use of perfluorosulfonic
acid cation exchange membranes (MF-4SC and Nafion), modified by zirconia nanoparticles, in the sensorswith the Donnan potential (DP) as an analytical signal, allows to reduce the interfering influence of hydroxonium
ions present in local anesthetics solutions on their response. This is due to the displacement of
electroneutral solution part from the membrane due to the presence of dopant particles in the pores center
and due to the electrostatic attraction of the protonated dopant and pore walls. The cross-sensitive DPsensors
and their arrays were used for the determination of procaine, lidocaine ions in the individual dosage
forms and the model solutions containing potassium chloride.
A potentiometric multisensory system with cross-sensitive DP-sensors based on MF-4SC membrane
containing 3 wt.% of SiO2, surface modified by 10 mol.% of 3-aminopropyl, and Nafion membrane
containing 2.4 wt.% of ZrO2, is proposed in this work for the simultaneously determination of procaine and
lidocaine cations in the concentration range from 1.0·10-4 to 1.0·10-2 M. The limits of detection for procaine
and lidocaine ions using the proposed multisensory system were 1.0·10-6 and 4.5·10-5 M, respectively. The
relative error of procaine and lidocaine cations determination in a combined pharmaceutical was 0.5-11 and
5-6%, respectively. The relative standard deviation of procaine and lidocaine cations determination in a
combined pharmaceutical was 4-11 and 10-12%, respectively.
Downloads
References
2. Qin W.W., Jiao Z., Zhong M.K., Shi X. J., Zhang J. et al., Journal of Chromatography B, 2010, Vol. 878, No 15-16, pp. 1185-1189. DOI: 10.1016/j.jchromb.2010.03.003.
3. Murtaza R., Jackman H.L., Alexander B., Lleshi-Tali A. et al., Journal of pharmacological and toxicological methods, 2001, Vol. 46, No 3, pp. 131-136. DOI: 10.1016/S1056-8719(02)00171-5.
4. Tanaka E., Nakamura T., Inomata S., Honda K., Journal of Chromatography B, 2006, Vol. 834, No 1-2, pp. 213-216. DOI:10.1016/j.jchromb.2006.02.034.
5. Koehler A., Oertel R., Kirch W., Journal of Chromatography A, 2005, Vol. 1088, No 1-2, pp. 126-130. DOI: 10.1016/j.chroma.2005.03.071.
6. Daryanavard S.M., Jeppsson‐Dadoun A., Andersson L.I., Hashemi M. et al., Biomedical Chromatography, 2013, Vol. 27, No 11, pp. 1481-1488. DOI: 10.1002/bmc.2946.
7. Baniceru M., Croitoru O., Popescu S.M., Journal of pharmaceutical and biomedical analysis, 2004, Vol. 35, No 3, pp. 593-598. DOI: 10.1016/j.jpba.2004.02.012.
8. Youngvises N., Liawruangrath B., Liawruangrath S., Journal of pharmaceutical and biomedical analysis, 2003, Vol. 31, No 4, pp. 629-638. DOI: 10.1016/S0731-7085(02)00693-3.
9. Ashour S., Boudakji A., Alfares B., Res. J. of Aleppo. Univ, 2009, Vol. 64, No 5, pp. 52-63.
10. Omer L.S., Ali R.J., International Journal of Chemistry, 2017, Vol. 9, No 4, pp. 49-61. DOI: 10.5539/ijc.v9n4p49.
11. Amin A.S., El-Didamony A.M., Analytical sciences, 2003, Vol. 19, No 10, pp. 1457-1459. DOI: 10.2116/analsci.19.1457.
12. Michalska K., Pajchel G., Tyski S., Journal of Chromatography B, 2004, Vol. 800, No 1-2, pp. 203-209. DOI:
10.1016/j.jchromb.2003.10.017.
13. Liu A.L., Wang J.D., Chen W., Xia X.H. et al., Journal of Solid State Electrochemistry, 2012, Vol. 16, No 4, pp. 1343-1351. DOI: 10.1007/s10008-011-1517-2.
14. Bergamini M.F., Santos A.L., Stradiotto N.R., Zanoni M.V.B., Journal of pharmaceutical and biomedical analysis, 2007, Vol. 43, No 1, pp. 315-319. DOI: 10.1016/j.jpba.2006.06.001.
15. Kulapina E.G., Barinova O.V., Journal of Analytical Chemistry, 2001, Vol. 56, No 5, pp. 457-460. DOI: 10.1023/A:101668312119116. Yang C., Denno M. E., Pyakurel P., Venton B.J., Analytica chimica acta, 2015, Vol. 887, pp. 17-37. DOI: 10.1016/j.aca.2015.05.049.
17. Abo-Hamad A., AlSaadi M.A., Hayyan M., Juneidi I. et al., Electrochimica Acta, 2016, Vol. 193, pp. 321-343. DOI:
10.1016/j.electacta.2016.02.044.
18. Oliveira R.T., Salazar‐Banda G.R., Ferreira V.S., Oliveira S.C. et al., Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2007, Vol. 19, No 11, pp. 1189-1194. DOI: 10.1002/elan.200603840.
19. Komorsky‐Lovrić Š., Vukašinović N., Penovski R., Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2003, Vol. 15, No 5‐6, pp. 544-547. DOI: 10.1002/elan.200390067.
20. Bobreshova O.V., Parshina A.V., Safronova E.Yu., Yankina K.Yu. et al., Journal of Analytical Chemistry, 2015, Vol. 70, No 5, pp. 627-632. DOI: 10.1134/S1995078013060049.
21. Yaroslavtsev A.B., Polymer Science Series A, 2013, Vol. 55, No 11, pp. 674-698. DOI: 10.1134/S0965545X13110060.
22. Mikheev A.G., Safronova E.Y., Yaroslavtsev A.B., Petroleum Chemistry, 2013, Vol. 53, No 7, pp. 504-510. DOI:
10.1134/S0965544113070104.
23. Parshina A.V., Bobreshova O.V., Denisova T.S., Sorbtsionnyye i khromatograficheskiye protsessy, 2015, Vol. 15, No 6, pp. 794-801.