Sorption and concentration anionic azo dyes on nanomagnetite modified with cationic polyelectrolytes
Abstract
Using the chemical coprecipitation method, magnetic magnetite nanoparticles (MNP) were synthesized, the surface of which was modified with biocompatible cationic polyelectrolytes polyethylenimine (PEI) and chitosan (Cht). The MNP were characterised by transmission microscopy and zeta potential measurements. The initial MNP have a shape close to spherical and an average size of (10±3) nm. Immobilization of polyelectrolyte on the surface of MNP led to the appearance of aggregates with an interconnected porous network (shell) around individual particles, with average sizes of (12±2) and (15±2) nm for Fe3O4@PEI and Fe3O4@Cht, accordingly. The influence of various experimental parameters, such as pH, extraction time, amount of sorbent and initial dye concentration on the adsorption and desorption of food azo dyes Allure Red AC (E129) and Brilliant Black BN (E151) was studied. It has been shown that under optimal conditions the degree of extraction of these dyes from aqueous solutions is 96-100%, the concentration coefficient is 2.7×103 and sorption capacity of 56 and 94 mg/g for Fe3O4@PEI and 46 and 69 mg/g on Fe3O4@ХТЗ for E129 and E151, respectively. A comparison of sorption isotherms and process kinetics showed that the Langmuir model and pseudo-first order are preferable for describing the sorption of dyes. In the acidic and neutral regions, electrostatic interactions are responsible for sorption, and in the alkaline region, hydrogen bonding and hydrophobic interactions also play a significant role. The proposed sorbents can be used both for the sorption and concentration of dyes in chemical analysis, and for the purification of wastewater from them. Nanomagnetite modified with polyethylenimine, which allows absorbing and concentrating dyes over a wide pH range of 6-9 is preferable for use.
Downloads
References
Smirnov E.V. Food colorings. St. Petersburg: Professiya Publ. House, 2009. 352 p. (In Russ.)
Bolotov V.M., Nechaev A.P., Sarafanova L.A. Pishchevye krasiteli: klassifikaciya, svojstva, analiz, primenenie. SPb.: GIORD, 2008. 240 p. (In Russ.)
Abramsson-Zetterberg L., Ilbdck N.G. The synthetic food coloring agent Allura Red AC (E129) is not genotoxic in a flow cytometry-based micronucleus assay in vivo. Food Chem. Toxicol. 2013; 59: 86-89. https://dx.doi.org/10.1016/j.fct.2013.05.047
European Food Safety Authority. Refined exposure assessment for Allura Red AC (E 129). EFSA J. 2015; 13(2): 4007. https://doi.org/10.2903/j.efsa.2015.4007
European Food Safety Authority. Refined exposure assessment for Brilliant Black BN (E 151). EFSA J. 2015; 13(1): 3960. https://doi.org/10.2903/j.efsa.2015.3960
Fernández C., Larrechi M.S., Callao M.P. An analytical overview of processes for removing organic dyes from wastewater effluents. TrAC. Trends Anal. Chem. 2010; 29(10): 1202-1211. https://doi.org/10.1016/j.trac.2010.07.011
Andrade-Eiroa A., Canle M., Leroy-Cancellieri V., Cerdà V. Solid-phase extraction of organic compounds: A critical review (Part I). Trends Anal. Chem. 2016; 80: 641-654. https://doi.org/10.1016/j.trac.2015.08.014
Fontanals N., Marcé R.M., Borrull F. Materials for Solid-Phase Extraction of Organic Compounds. Separations. 2019; 6(4): Article 56. https://doi.org/10.3390/separations6040056
Tikhomirova T.I., Ramazanova G.R., Apyari V.V. Adsorption preconcentration of synthetic anionic food dyes. J. Anal. Chem. 2017; 72(9): 917–934. https://doi.org/10.1134/S1061934817090118
Khal'zova S.A., Zyablov A.N., Duvanova O.V., Selemenev V.F., Kozlov A.T. Sorbciya sinteticheskih krasitelej polimerami s molekulyarnymi otpechatkami. Sorbtsionnye i Khromatograficheskie Protsessy. 2017; 17(1): 156-160. (In Russ.)
Egunova O.R., Konstantinova T.A., SHtykov S.N. Magnitnye nanochasticy magnetita v razdelenii i koncentrirovanii. Izv. Sarat. Univ. Nov. Ser. Ser. Khim. Biol. Ecol. 2014; 14(4): 27-34. (In Russ.) https://doi.org/10.18500/1816-9775-2014-14-4-27-35
Tolmacheva V.V., Apyari V.V., Kochuk E.V., Dmitrienko S.G. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of the organic compounds. J. Anal. Chem. 2016; 71(4): 321-338. https://doi.org/10.1134/S1061934816040079
Nguyen M.D., Tran H.-V., Xu S., Lee T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021; 11: Article 11301. https://doi.org/10.3390/app112311301
Khabibullin V.R., Chetyrkina M.R., Obydennyy S.I., Maksimov S.V., Stepanov G.V., Shtykov S.N. Study on doxorubicin loading on differently functionalized iron oxide nanoparticles: implications for controlled drug-delivery application. Int. J. Mol. Sci. 2023; 24: Article 4480. https://doi.org/10.3390/ijms24054480
Asfaram A., Ghaedi M., Abidi H., Javadian H., Zoladl M., Sadeghfar F. Synthesis of Fe3O4@CuS@Ni2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. Ultrason. Sonochem. 2018; 44: 240-250. https://doi.org/10.1016/j.ultsonch.2018.02.011
Bakheet A.A.A., Zhu X.S. Poly(ionic liquid) immobilized magnetic nanoparticles as sorbent coupled with fluorescence spectrophotometry for separation/analysis of Allura red. J Mol. Liq. 2017; 242: 900-906. https://doi.org/10.1016/j.molliq.2017.07.097
Chen H., Deng X., Ding G., Qiao Y. The synthesis, adsorption mechanism and application of polyethyleneimine functionalized magnetic nanoparticles for the analysis of synthetic colorants in candies and beverages. Food Chem. 2019; 293: 340-347. https://doi.org/10.1016/j.foodchem.2019.04.111
Li Q., Gao Q., Liu W., Zhu X. Choline Proline Ionic Liquid-Functionalized Fe3O4@SiO2 Nanoparticle Magnetic Solid Phase Extraction Coupled with High-Performance Liquid Chromatography for Analysis of Allura Red in Lipstick Sample. J. Cosmet. Sci. 2021; 72: 347-361. https://pubmed.ncbi.nlm.nih.gov/35262478
Oymak T., Dural E. Determination of sunset yellow, allura red, and fast green using a novel magnetic nanoadsorbent modified with Elaeagnus angustifolia based on magnetic solid-phase extraction by HPLC. Braz. J. Pharm. Sci. 2023; 58: Article e20884. https://doi.org/10.1590/s2175-97902022e20884
Wang X., Chen N., Han Q., Yang Z., Wu J., Xue C., Hong J., Zhou X., Jiang H. Selective separation and determination of the synthetic colorants in beverages by magnetic solid-phase dispersion extraction based on a Fe3O4/reduced graphene oxide nanocomposite followed by high-performance liquid chromatography with diode array detectio: Sample Preparation. J. Separ. Sci. 2015; 38: 2167-2173. https://doi.org/10.1002/jssc.201500014
Xi D., Deng X., Li H., Yao P. Preparation and characterization of Fe3O4@nSiO2@mSiO2–NH2 core–shell microspheres for extracting Allura Red from aqueous solution. NANO: Brief Rep. Rev. 2015; 10: Article 1550122. https://doi.org/10.1142/S1793292015501222
Yu Y., Fan Z. Magnetic solid-phase extraction coupled with HPLC for the determination of Allura Red in food and beverage samples. Food Addit. Contam. A. 2016; 33: 1527-1534. http://doi.org/10.1080/19440049.2016.1231937
Bevziuk K., Chebotarev A., Snigur D., Bazel Ya., Fizer M., Sidey V. Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R. J. Mol. Struct. 2017; 1144: 216-224. http://dx.doi.org/10.1016/j.molstruc.2017.05.001
Egunova O., Reshetnikova I., Kazimirova K., Shtykov S. Magnetic Solid-Phase Extraction and Fluorimetric Determination of Some Fluoroquinolones. J. Anal. Chem. 2020; 75(1): 24-33. https://doi.org/10.1134/S1061934820010062
Koper G.J.M., van Duijvenbode R.C., Stam D.P.W., Steuerle U., Borkovec M. Synthesis and Protonation Behavior of Comblike Poly(ethyleneimine). Macromolecules. 2003; 36(7): 2500-2507. https://doi.org/10.1021/ma020819s
Crini G., Badot P-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progr. Polym. Sci. 2008; 33: 399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
Egunova O.E., Shtykov S.N. Koncentrirovanie nekotoryh antibiotikov ftorhinolonovogo ryada metodom magnitnoj tverdofaznoj ekstrakcii na nanochasticah magnetita. Sorbcionnye i hromatogr. processy. Sorbtsionnye i Khromatograficheskie Protsessy. 2018; 18(6): 825-835. (In Russ.) https://doi.org/10.17308/sorpchrom.2018.18/610
Azizian S. Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 2004; 276: 47-52. https://doi.org/10.1016/j.jcis.2004.03.048